Skip to main content
Log in

Investigation of Microwave Processing Parameters on Development of Ni-40Cr3C2 Composite Clad and Their Characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The chromium carbide (Cr3C2)-reinforced Ni-based composite clad on austenitic stainless steel (SS-316) substrate was successfully developed by the microwave cladding route after optimizing process parameters (Power: 900 Watt, Exposure Time: 380 seconds). Clads were developed at 2.45 GHz frequency in a domestic microwave oven. The developed composite clad has been examined for metallurgical and mechanical properties. The investigation was carried out by using scanning electron microscopy (SEM) equipped with a backscatter electron detector, energy dispersive spectroscopy (EDS) for elemental analysis, and X-ray diffractometry (XRD) for phase analysis and their quantification and Vicker’s microhardness tester for microhardness. Clads of thickness 600 µm were successfully developed, which are free from visible pores and all types of cracks (interfacial or solidification cracks). The porosity analysis was carried out by using ASTM B-276 standard, and results reveal that porosity is less than 2 pct. The average microhardness of the developed clad is observed 605 ± 80 HV0.3. The developed clad was three times harder than the substrate (SS-316). The various intermetallic (Ni3Fe, Cr3Si, and Ni2Si) and different carbides (Cr7C3, NiC, Ni3C, SiC, and Cr3Ni2SiC) phases were observed through XRD examination. The distribution of intermetallic and various hard carbide phases in the clad has a direct influence on hardness and increases hardness at great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Bhushan: Introduction to Tribology, Wiley, Chichester 2013.

    Google Scholar 

  2. 2 S. Li: Interface Focus, 2015, vol. 5, p. 20150020.

    Google Scholar 

  3. 3 X. Escaler, E. Egusquiza, M. Farhat, F. Avellan, and M. Coussirat: Mech. Syst. Signal Process., 2006, vol. 20, pp. 983–1007.

    Google Scholar 

  4. 4 L. Ceschini, C. Chiavari, E. Lanzoni, and C. Martini: Mater. Des., 2012, vol. 38, pp. 154–60.

    CAS  Google Scholar 

  5. 5 M. Kulka, D. Mikolajczak, N. Makuch, P. Dziarski, and A. Miklaszewski: Surf. Coatings Technol., 2016, vol. 291, pp. 292–313.

    CAS  Google Scholar 

  6. 6 K.G. Budinski: Surface Engineering for Wear Resistance, Prentice Hall, Englewood Cliffs, N.J, 1988.

    Google Scholar 

  7. 7 M. Roy: Surface Engineering for Enhanced Performance against Wear, Springer Vienna, Vienna, 2013.

    Google Scholar 

  8. 8 R. Singh, S.K. Tiwari, and S.K. Mishra: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1539–51.

    CAS  Google Scholar 

  9. 9 H. Vasudev, G. Singh, A. Bansal, S. Vardhan, and L. Thakur: Mater. Res. Express, 2019, vol. 6, pp. 1–20.

    Google Scholar 

  10. 10 R.R. Mishra and A.K. Sharma: Compos. Part A Appl. Sci. Manuf., 2016, vol. 81, pp. 78–97.

    CAS  Google Scholar 

  11. 11 A. Bekal, A.M. Hebbale, and M.S. Srinath: IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 376, p. 012079.

    Google Scholar 

  12. Patent application 527/Del, India: 2010.

  13. 13 D. Gupta, P.M. Bhovi, A.K. Sharma, and S. Dutta: J. Manuf. Process., 2012, vol. 14, pp. 243–9.

    Google Scholar 

  14. 14 S. Zafar, A.K. Sharma, and N. Arora: i-manager’s J. Mech. Eng., 2013, vol. 3, pp. 9–16.

    Google Scholar 

  15. 15 A.M. Hebbale and M.S. Srinath: Measurement, 2017, vol. 99, pp. 98–107.

    Google Scholar 

  16. 16 A. Bansal, S. Zafar, and A.K. Sharma: J. Mater. Eng. Perform., 2015, vol. 24, pp. 3708–16.

    CAS  Google Scholar 

  17. 17 D. Gupta and A.K. Sharma: J. Mater. Eng. Perform., 2012, vol. 21, pp. 2165–72.

    CAS  Google Scholar 

  18. S. Kaushal, V. Sirohi, D. Gupta, H. Bhowmick, and S. Singh: Proc. Inst. Mech. Eng. L, 2018, vol. 232, pp. 80–6.

    CAS  Google Scholar 

  19. 19 B. Singh, S. Kaushal, D. Gupta, and H. Bhowmick: J. Tribol., 2018, vol. 140, p. 061603.

    Google Scholar 

  20. 20 S. Zafar and A.K. Sharma: Wear, 2016, vol. 346–347, pp. 29–45.

    Google Scholar 

  21. 21 B. Singh and S. Zafar: Wear, 2019, vol. 426–427, pp. 491–500.

    Google Scholar 

  22. 22 S. Kaushal, D. Gupta, and H. Bhowmick: Surf. Eng., 2018, vol. 34, pp. 809–17.

    CAS  Google Scholar 

  23. 23 A. Babu, H.S. Arora, H. Singh, and H.S. Grewal: Wear, 2019, vol. 422–423, pp. 242–51.

    Google Scholar 

  24. 24 R.B. Bhagat: J. Mater. Sci. Lett., 1987, vol. 6, pp. 1473–5.

    Google Scholar 

  25. 25 U. Dorji and R. Ghomashchi: Eng. Fail. Anal., 2014, vol. 44, pp. 136–47.

    Google Scholar 

  26. H.O. Pierson: Handbook of Refractory Carbides and Nitrides, Elsevier, Amsterdam, 1996.

    Google Scholar 

  27. 27 A. Babu, H.S. Arora, S.N. Behera, M. Sharma, and H.S. Grewal: Surf. Coatings Technol., 2018, vol. 349, pp. 655–66.

    CAS  Google Scholar 

  28. 28 A. Babbar, P. Singh, and H.S. Farwaha: Indian J. Sci. Technol., 2017, vol. 10, pp. 1–7.

    CAS  Google Scholar 

  29. C.Y. Ho and T.K. Chu: in Electrical Resistivity and Thermal Conductivity of Nine Selected AISI Stainless Steels - Center for Information and Numerical Data Analysis and Synthesis, 1977.

  30. 30 W.D. Callister: Mater. Des., 1991, vol. 12, p. 59.

    Google Scholar 

  31. 31 A.K. Sharma and D. Gupta: Appl. Surf. Sci., 2012, vol. 258, pp. 5583–92.

    CAS  Google Scholar 

  32. 32 R.W. Powell, R.P. Tye, and M.J. Hickman: Int. J. Heat Mass Transf., 1965, vol. 8, pp. 679–88.

    CAS  Google Scholar 

  33. 33 A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal: Sci. Sinter., 2010, vol. 42, pp. 169–82.

    CAS  Google Scholar 

  34. 34 S.M. Lingappa, M.S. Srinath, and H.J. Amarendra: Mater. Res. Express, 2017, vol. 4, p. 106521.

    Google Scholar 

  35. 35 F.T. Cheng, C.T. Kwok, and H.C. Man: Surf. Coatings Technol., 2001, vol. 139, pp. 14–24.

    CAS  Google Scholar 

  36. 36 S.N. Aqida, M.I. Ghazali, and J. Hashim: J. Teknol., 2013, vol. 40, pp. 17–32.

    Google Scholar 

  37. 37 T. Pramod, R.K. Kumar, S. Seetharamu, and M. Kamaraj: Int. J. Adv. Mech. Eng., 2014, vol. 4, pp. 307–14.

    Google Scholar 

  38. 38 J.F. Santa, L.A. Espitia, J.A. Blanco, S.A. Romo, and A. Toro: Wear, 2009, vol. 267, pp. 160–7.

    CAS  Google Scholar 

  39. O. Knotek, R. Elsing, and H. R. Heintz: J. Vac. Sci. Technol. A 1985, vol. 3, pp. 2490–3.

    CAS  Google Scholar 

  40. 40 C. Pan, H. Wang, H. Wang, Q. Chang, and H. Wang: J. Wuhan Univ. Technol. Sci. Ed., 2010, vol. 25, pp. 991–5.

    CAS  Google Scholar 

  41. 41 S. Li, D. Feng, and H. Luo: Surf. Coatings Technol., 2007, vol. 201, pp. 4542–6.

    CAS  Google Scholar 

  42. 42 D. Bhattacharyya, J. Davis, M. Drew, R.P. Harrison, and L. Edwards: Mater. Charact., 2015, vol. 105, pp. 118–28.

    CAS  Google Scholar 

  43. 43 S. Kaushal, D. Gupta, and H. Bhowmick: Mater. Res. Express, 2019, vol. 6, pp. 1–10.

    Google Scholar 

  44. N.-T. Nguyen: in Micromixers, Elsevier, Amsterdam, 2012, pp. 113–61.

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by the SERB (Science & Engineering research board), India. Under the under project titled “Development of Microwave Processed Cavitation Resistant Cladding” (Grant No. EMR/2016/007964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Bansal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mago, J., Bansal, S., Gupta, D. et al. Investigation of Microwave Processing Parameters on Development of Ni-40Cr3C2 Composite Clad and Their Characterization. Metall Mater Trans A 51, 4288–4300 (2020). https://doi.org/10.1007/s11661-020-05832-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05832-y

Navigation