Skip to main content
Log in

Determining Thermophysical Properties of Normal and Metastable Liquid Zr-Fe Alloys by Electrostatic Levitation Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The thermophysical properties of liquid Zr-Fe alloys were experimentally measured by an electrostatic levitation technique. A series of undercoolings from 45 K to 410 K were achieved for these liquid alloys in the natural radiation cooling process. Since the experiments were conducted in high-vacuum and containerless conditions, the ratio of the specific heat to the hemispherical emissivity was deduced and showed a quadratic relationship with temperature. For the eutectic Zr76Fe24 alloy, the hypercooling of 306 K and hemispherical emissivity were derived theoretically due to its low liquidus temperature and scarce volatilization. Through digital image processing, the alloy densities were measured, and the results depended linearly on temperature over a wide temperature range covering both superheated and undercooled liquid states. The absolute value of the temperature coefficient tended to increase with increasing Fe contents, indicating that the liquid density sensitivity increased with increasing Fe contents. The surface tension and viscosity were also determined by a drop oscillation method under the electrostatic levitation condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. J. Lü and M. Chen, Int. J. Mol. Sci., 2011, vol. 12, pp. 278-316.

    Google Scholar 

  2. S. H. Oh, M. F. Chisholm, Y. Kauffmann, W. D. Kaplan, W. Luo, M. Ruehle and C. Scheu, Science, 2010, vol. 330, pp. 489-93.

    CAS  Google Scholar 

  3. M. P. Brenner and D. Lohse, Phys. Rev. Lett., 2008, vol. 101, art. no. 214505.

    Google Scholar 

  4. B. Ribic, R. Rai and T. DebRoy, Sci. Technol. Weld. Joining, 2008, vol. 13, pp. 683-93.

    CAS  Google Scholar 

  5. S. I. Sohn, Phys. Rev. E, 2009, vol. 80, art. no. 55302.

    Google Scholar 

  6. H. P. Wang, S. J. Yang, L. Hu and B. Wei, Chem. Phys. Lett., 2016, vol. 653, pp. 112-6.

    CAS  Google Scholar 

  7. L. Hu, L. H. Li, S. J. Yang and B. Wei, Chem. Phys. Lett., 2015, vol. 621, pp. 91-5.

    CAS  Google Scholar 

  8. B. O. Mukhamedov, I. Saenko, A. V. Ponomareva, M. J. Kriegel, A. Chugreev, A. Udovsky, O. Fabrichnaya and I. A. Abrikosov, Intermetallics, 2019, vol. 109, pp. 189-96.

    CAS  Google Scholar 

  9. J. C. Bendert, M. E. Blodgett, A. K. Gangopadhyay and K. F. Kelton, Appl. Phys. Lett., 2013, vol. 102, art. no. 211913.

    Google Scholar 

  10. I. Saenko, A. Kuprava, A. Udovsky and O. Fabrichnaya, Calphad, 2019, vol. 66, art. no. 101625.

    CAS  Google Scholar 

  11. J. D. Paulsen, J. C. Burton and S. R. Nagel, Phys. Rev. Lett., 2011, vol. 106, art. no. 114501.

    Google Scholar 

  12. E. de Miguel, N. G. Almarza and G. Jackson, J. Chem. Phys., 2007, vol. 127, art. no. 34707.

    Google Scholar 

  13. S. Jeon, D. Kang, S. H. Kang, S. E. Kang, J. T. Okada, T. Ishikawa, S. Lee and G. W. Lee, Isij Int., 2016, vol. 56, pp. 719-22.

    Google Scholar 

  14. T. Ishikawa and P. Paradis, Crystals, 2017, vol. 7, art. no. 309.

    Google Scholar 

  15. D. Kang, S. Jeon, H. Yoo, T. Ishikawa, J. T. Okada, P. Paradis and G. W. Lee, Cryst. Growth Des., 2014, vol. 14, pp. 1103-9.

    CAS  Google Scholar 

  16. H. P. Wang, B. C. Luo and B. Wei, Phys. Rev. E, 2008, vol. 78, art. no. 41204.

    CAS  Google Scholar 

  17. P. C. Zhang, J. Chang and H. P. Wang, Metall. Mater. Trans. B, 2020, vol. 51, pp. 327-37.

    Google Scholar 

  18. W. J. Xie, C. D. Cao, Y. J. Lü and B. Wei, Phys. Rev. E, 2002, vol. 66, art. no. 61601.

    CAS  Google Scholar 

  19. H. P. Wang, P. Lü, X. Cai, B. Zhai, J. F. Zhao, B. Wei, Mater. Sci. Eng. A, 2020, vol. 772, art. no. 138660.

    CAS  Google Scholar 

  20. H. P. Wang, M. X. Li, P. F. Zou, X. Cai, L. Hu and B. Wei, Phys. Rev. E, 2018, vol. 98, art. no. 63106.

    CAS  Google Scholar 

  21. K. Zhou and B. Wei, Appl. Phys. A: Mater. Sci. Process., 2016, vol. 122, art. no. 248.

    Google Scholar 

  22. R. K. Wunderlich, H. Fecht and G. Lohöfer, Metall. Mater. Trans. B, 2017, vol. 48, pp. 237-46.

    Google Scholar 

  23. H. P. Wang, C. H. Zheng, P. F. Zou, S. J. Yang, L. Hu and B. Wei, J. Mater. Sci. Technol., 2018, vol. 34, pp. 436-9.

    Google Scholar 

  24. Q. L. Chu, M. Zhang, J. H. Li, F. X. Yan and C. Yan, Mater. Lett., 2018, vol. 231, pp. 134-6.

    CAS  Google Scholar 

  25. J. L. Lin, W. C. Zhong, Z. W. Cheng, H. Z. Bilheux and B. J. Heuser, J. Nucl. Mater., 2017, vol. 496, pp. 129-39.

    CAS  Google Scholar 

  26. W. Li, Y. Z. Yang, J. Xu and C. X. Xie, J. Alloy. Compd., 2017, vol. 710, pp. 644-9.

    CAS  Google Scholar 

  27. Q. Peng, E. Gartner, J. T. Busby, A. T. Motta and G. S. Was, Corrosion, 2007, vol. 63, pp. 577-90.

    CAS  Google Scholar 

  28. A. Couet, A. T. Motta and R. J. Comstock, J. Nucl. Mater., 2014, vol. 451, pp. 1-13.

    CAS  Google Scholar 

  29. S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger and D. Rafaja, Steel Res. Int., 2011, vol. 82, pp. 1133-40.

    CAS  Google Scholar 

  30. Y. X. Geng, Z. J. Zhang, Z. R. Wang, Y. M. Wang, J. B. Qiang, C. Dong, H. B. Wang and O. Tegus, J. Non-Cryst. Solids, 2016, vol. 450, pp. 1-5.

    CAS  Google Scholar 

  31. L. T. Zhang, Y. P. Zhang, Y. K. Zhou, W. X. Tian, S. Z. Qiu and G. H. Su, Prog. Nucl. Energ., 2015, vol. 79, pp. 167-81.

    CAS  Google Scholar 

  32. T. Okawa and T. Nakajima, Ann. Nucl. Energy, 2017, vol. 101, pp. 182-95.

    CAS  Google Scholar 

  33. Y. Ohishi, H. Muta, K. Kurosaki, J. T. Okada, T. Ishikawa, Y. Watanabe and S. Yamanaka, J. Nucl. Sci. Technol., 2016, vol. 53, pp. 1943-50.

    CAS  Google Scholar 

  34. F. Stein, G. Sauthoff and M. Palm, J. Phase Equilib., 2002, vol. 23, pp. 480-94.

    CAS  Google Scholar 

  35. P. F. Zou, H. P. Wang, S. J. Yang, L. Hu and B. Wei, Metall. Mater. Trans. A, 2018, vol. 49, pp. 5488-96.

    Google Scholar 

  36. P. F. Zou, H. P. Wang, S. J. Yang, L. Hu and B. Wei, Chem. Phys. Lett., 2017, vol. 681, pp. 101-04.

    CAS  Google Scholar 

  37. A. J. Rulison and W. K. Rhim, Rev. Sci. Instrum., 1994, vol. 65, pp. 695-700.

    CAS  Google Scholar 

  38. Y. S. Sung, H. Takeya and K. Togano, J. Appl. Phys., 2002, vol. 92, pp. 6531-6.

    CAS  Google Scholar 

  39. L. Rayleigh, Proc. R. Soc. London, 1879, vol. 29, pp. 71-97.

    Google Scholar 

  40. K. V. Beard and J. Q. Feng, Proc. R. Soc. A, 1990, vol. 430, pp. 133-50.

    Google Scholar 

  41. P. F. Paradis, T. Ishikawa, G. W. Lee, D. HollandMoritz, J. Brillo, W. K. Rhim and J. T. Okada, Mater. Sci. Eng. R, 2014, 76, 1-53.

    Google Scholar 

  42. J. Lee, J. E. Rodriguez, R. W. Hyers and D. M. Matson, Metall. Mater. Trans. B, 2015, vol. 46, pp. 2470-5.

    Google Scholar 

  43. P. F. Paradis and W. K. Rhim, J. Chem. Thermodyn., 2000, vol. 32, pp. 123-33.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 51734008, 51327901), National Key R&D Program of China (Grant No. 2018YFB2001800), Shannxi Key Industry Chain Program (Grant No. 2019ZDLGY05-10) and Innovation Leadership Program in Sciences and Technologies for Young and Middle-aged Scientists. The authors are grateful to Dr. S.J. Yang, Mr. Q. Wang and Miss L. Wang for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 25, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, C.H., Wang, H.P., Zou, P.F. et al. Determining Thermophysical Properties of Normal and Metastable Liquid Zr-Fe Alloys by Electrostatic Levitation Method. Metall Mater Trans A 51, 4074–4085 (2020). https://doi.org/10.1007/s11661-020-05820-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05820-2

Navigation