Skip to main content
Log in

The Effect of Second Tempering on Hydrogen Embrittlement of Ultra-High-Strength Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of the present study is to enhance the resistance of hydrogen embrittlement (HE) via second tempering at 250 °C for 30, 60 and 120 minutes. Although second tempering results in a higher saturated hydrogen content for the second tempering specimens during a slow strain rate test (SSRT), it effectively reduces HE susceptibility. As the second tempering time increases, dislocation density decreases. In contrast, the size of the cementite and MoyCx precipitates increase slightly. The density of MoyCx precipitates increases, whereas the density of cementite remains approximately the same as the second tempering time increases. Regarding second tempering specimens, the volume fraction’s increase in MoyCx precipitates, which acts as a hydrogen trap with high binding energy, plays an important role in reducing the HE susceptibility, and the decrease in dislocation density can also improve HE resistance. In addition, the growth of the interface of the cementite and matrix disperses more hydrogen, which could enhance HE resistance. The result also reveals that the cementite and matrix interface is a type of low-binding-energy hydrogen trap without plastic deformation, whereas the strain interface with interfacial dislocations is a type of high binding energy hydrogen trap under plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1. T. Doshida, M. Nakamura, H. Saito, T. Sawada and K. Takai: Acta Mater., 2013, vol. 61, pp. 7755-66.

    Article  CAS  Google Scholar 

  2. 2. A. Nagao, T. Ito and T. Obinata: JFE Tech. Rep., 2008, vol. 11, pp. 13-8.

    Google Scholar 

  3. 3. X. Zhu, W. Li, H.S. Zhao and X.J. Jin: Int. J. Hydrogen Energy, 2013, vol. 38, pp. 10694-703.

    Article  CAS  Google Scholar 

  4. 4. Y. Momotani, A. Shibata, D. Terada and N. Tsuji: Mater. Today: Proc., 2015, vol. 2, pp. S735-8.

    Google Scholar 

  5. S.K. Ji, H.L. You, D.L. Lee, K.T. Park and S.L. Chong (2009) Mater. Sci. Eng. A, vol. 505, pp. 105-10.

    Article  Google Scholar 

  6. 6. T. Michler and M.P. Balogh: Int. J. Hydrogen Energy, 2010, vol. 35, pp. 9746-54.

    Article  CAS  Google Scholar 

  7. 7. M.Q. Wang, E. Akiyama and K. Tsuzaki: Corros. Sci., 2007, vol. 49, pp. 4081-97.

    Article  CAS  Google Scholar 

  8. 8. K. Takai: Isij Int., 2012, vol. 52, pp. 167.

    Article  CAS  Google Scholar 

  9. 9. M. Dadfarnia, A. Nagao, S. Wang, M.L. Martin, B.P. Somerday and P. Sofronis: Int. J. Fract., 2015, vol. 196, pp. 1-21.

    Article  Google Scholar 

  10. 10. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis and I.M. Robertson: Acta Mater., 2014, vol. 74, pp. 244-54.

    Article  CAS  Google Scholar 

  11. W.J. Hui, H.X. Zhang, Y.J. Zhang, X.L. Zhao and C.W. Shao (2016) Mater. Sci. Eng. A, vol. 674, pp. 615-25.

    Article  CAS  Google Scholar 

  12. Y. Sakamoto, K. Takao and S. Tokumitsu (1976) Mater. Trans. JIM, vol. 17, pp. 743-8.

    Article  CAS  Google Scholar 

  13. 13. A. Nagao, K. Hayashi, K. Oi and S. Mitao: Isij Int., 2012, vol. 52, pp. 213-21.

    Article  CAS  Google Scholar 

  14. 14. H. Fuchigami, H. Minami and M. Nagumo: Philos. Mag. Lett., 2006, vol. 86, pp. 21-9.

    Article  CAS  Google Scholar 

  15. 15. L.W. Tsay, H.L. Lu and C. Chen: Corros. Sci., 2008, vol. 50, pp. 2506-11.

    Article  CAS  Google Scholar 

  16. 16. H. Iwaoka, M. Arita and Z. Horita: Acta Mater., 2016, vol. 107, pp. 168-77.

    Article  CAS  Google Scholar 

  17. 17. P. Castaño-Rivera, N.S.D Vincentis, R.E. Bolmaro and P. Bruzzoni: Procedia Mater. Sci., 2015, vol. 8, pp. 1031-8.

    Article  Google Scholar 

  18. 18. C. Park, N. Kang, M. Kim and S. Liu: Mater. Lett., 2019, vol. 235, pp. 193-6.

    Article  CAS  Google Scholar 

  19. 19. T. Depover and K. Verbeken: Int. J. Hydrogen Energy, 2018, vol. 43, pp. 3050-61.

    Article  CAS  Google Scholar 

  20. 20. M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis and I.M. Robertson: J. Mech. Phys. Solids, 2015, vol. 78, pp. 511-25.

    Article  CAS  Google Scholar 

  21. 21. M. Nagumo and K. Takai: Acta Mater., 2019, vol. 165, pp.722-33.

    Article  CAS  Google Scholar 

  22. 22. K. Takai and R. Watanuki: Isij Int., 2003, vol. 43, pp. 520-6.

    Article  CAS  Google Scholar 

  23. 23. W.M. Robertson and A.W. Thompson: Metall. Trans. A, 1980, vol. 11, pp. 553-7.

    Article  Google Scholar 

  24. 24. F.G. Wei, T. Hara, T. Tsuchida and K. Tsuzaki: Trans. Iron Steel Inst. Jpn., 2003, vol. 43, pp. 539-47.

    Article  CAS  Google Scholar 

  25. 25. F.G. Wei and K. Tsuzaki: Scr. Mater., 2005, vol. 52, pp. 467-72.

    Article  CAS  Google Scholar 

  26. 26. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  CAS  Google Scholar 

  27. 27. G.K. Williamson and R.E. Smallman: Philos. Mag., 2012, vol. 1, pp. 34-46.

    Article  Google Scholar 

  28. 28. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata: Isij Int., 2010, vol. 50, pp. 875-82.

    Article  CAS  Google Scholar 

  29. J.L. Yang, F. Huang, Z.H. Guo, Y.H. Rong and N.L. Chen (2016) Mater. Sci. Eng. A, vol. 665, pp. 76-85.

    Article  CAS  Google Scholar 

  30. 30. G.W. Hong and J.Y. Lee: Metall. Trans. A, 1983, vol. 14, pp. 156-8.

    Article  CAS  Google Scholar 

  31. 31. M. Hatano, M. Fujinami, K. Arai, H. Fujii and M. Nagumo: Acta Mater., 2014, vol. 67, pp. 342-53.

    Article  CAS  Google Scholar 

  32. 32. X. Zhu, W. Li, T.Y. Hsu, S. Zhou, L. Wang and X.J. Jin: Scr. Mater., 2015, vol. 97, pp. 21-4.

    Article  CAS  Google Scholar 

  33. 33. S.H. Yu, S.M. Lee, S. Lee, J.H. Nam, J.S. Lee, C.M. Bae and Y.K. Lee: Acta Mater., 2019, vol. 172, pp. 92-101.

    Article  CAS  Google Scholar 

  34. 34. Y.F. Jiang, B. Zhang, D.Y. Wang, Y. Zhou, J.Q. Wang, E.H. Han and W. Ke: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1081-7.

    Article  Google Scholar 

  35. 35. C. Park, N. Kang, S. Liu, J. Lee, E. Chun and S.J. Yoo: Met. Mater. Int., 2018, vol. 25, pp. 584-93.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China under Grant Nos. U1760203 and 51571029 and the National Key R&D Program of China (2017YFB0304401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 29, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Kan, B., Xu, J. et al. The Effect of Second Tempering on Hydrogen Embrittlement of Ultra-High-Strength Steel. Metall Mater Trans A 51, 2811–2821 (2020). https://doi.org/10.1007/s11661-020-05749-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05749-6

Navigation