Skip to main content
Log in

Reversion of Post-Shape Memory Effect Twins During Unloading of Uranium-6 wt pct Niobium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uranium-6 wt pct niobium (14 at pct niobium) displays the shape memory effect (SME), where deformation proceeds by twinning and twin rearrangement via boundary migration within the SME regime. In-situ neutron diffraction during deformation suggests that after SME strain is exhausted, deformation proceeds via another twinning mechanism that does not recover to the original parent orientation upon reheating and transformation. Here we show from in-situ tensile and compressive loading and unloading experiments that early post-SME twins partially reverse during unloading, which is evident by rapid texture evolution, and this reversion is responsible for the inelastic portion of the previously reported ~ 2 pct strain recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The rotation for the (010) vs the (100) twin differs by only ~5 deg, too small to be differentiated by the texture data. Therefore, the twin will be henceforth referred to as (010), with the understanding that either it or its reciprocal could be responsible for the observed rotation.[11]

  2. In both the tension and compression curves, there is a lowering of the work hardening rate (WHR), which is often referred to in the literature as a plateau, even though the WHR does not go to zero.

References

  1. [1] R.J. Jackson, Rocky Flats Division, The Dow Chemical Company, Golden, Colorado, 1970.

    Google Scholar 

  2. [2] R.A. Vandermeer, J.C. Ogle, W.B. Snyder, Scr. Metall., 1978, vol. 12, pp. 243-248.

    Article  CAS  Google Scholar 

  3. [3] R.A. Vandermeer, J.C. Ogle, W.G. Northcutt, Metall. Trans. A, 1981, vol. 12, pp. 733-741.

    Article  Google Scholar 

  4. [4] D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.J. Thoma, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2219-2228.

    Article  CAS  Google Scholar 

  5. [5] R.A. Vandermeer, Acta Metall., 1980, vol. 28, pp. 383-393.

    Article  CAS  Google Scholar 

  6. [6] D.A. Carpenter, R.A. Vandermeer, Adv. X-Ray Anal., 1985, vol. 26, pp. 307-312.

    Google Scholar 

  7. [7] R.D. Field, D.W. Brown, D.J. Thoma, Phil. Mag., 2005, vol. 85, pp. 1441-1457.

    Article  CAS  Google Scholar 

  8. [8] R.D. Field, D.W. Brown, D.J. Thoma, Phil. Mag., 2005, vol. 85, pp. 2593-2609.

    Article  CAS  Google Scholar 

  9. [9] R.D. Field, D.J. Thoma, P.S. Dunn, D.W. Brown, C.M. Cady, Phil. Mag. A, 2001, vol. 81, pp. 1691-1724.

    Article  CAS  Google Scholar 

  10. [10] D.W. Brown, M.A.M. Bourke, A.J. Clarke, R.D. Field, R.E. Hackenberg, W.L. Hults, D.J. Thoma, J. Nuc. Matl., 2016, vol. 481, pp. 164-175.

    Article  CAS  Google Scholar 

  11. [11] C.N. Tupper, D.W. Brown, R.D. Field, T.A. Sisneros, B. Clausen, Metall. Mater. Trans. A, 2012, vol. 43A, pp. 520-530.

    Article  Google Scholar 

  12. [12] D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.F. Teter, D.J. Thoma, S.C. Vogel, in: S. Bhatia, P. Khalifah, D. Pochan, P. Radaelli (Eds.) Materials Research Society Fall Meeting, Materials Research Society, Boston, MA, 2005, pp. 205-210.

    Google Scholar 

  13. [13] A.J. Clarke, R.D. Field, R.J. McCabe, C.M. Cady, R.E. Hackenberg, D.J. Thoma, Acta Mater., 2008, vol. 56, pp. 2638-2648.

    Article  CAS  Google Scholar 

  14. [14] A.J. Clarke, R.D. Field, P.O. Dickerson, R.J. McCabe, J.G. Swadener, R.E. Hackenberg, D.J. Thoma, Scr. Mater., 2009, vol. 60, pp. 890-892.

    Article  CAS  Google Scholar 

  15. [15] Y. Zhang, X. Wang, X. Chen, D. Xiao, Rare Metal Materials and Engineering, 2015, vol. 44, pp. 1094-1098.

    Article  CAS  Google Scholar 

  16. [16] Z.Y. Ren, R. Ma, G.C. Hu, J. Wu, Z.H. Wang, C. Luo, J. Nuc. Matl., 2017, vol. 494, pp. 72-78.

    Article  CAS  Google Scholar 

  17. [17] Y.Z. Zhang, D.P. Wang, W.J. Guan, X.L. Chen, X.L. Wang, Powder Diffr., 2017, vol. 32, pp. 72-77.

    Article  CAS  Google Scholar 

  18. [18] M.A.M. Bourke, D.C. Dunand, E. Ustundag, Appl. Phys. A, 2002, vol. A74, pp. S1707-S1709.

    Article  Google Scholar 

  19. [19] R.B. Vondreele, J.D. Jorgensen, C.G. Windsor, J. App. Crys., 1982, vol. 15, pp. 581-589.

    Article  CAS  Google Scholar 

  20. [20] R.B. Von Dreele, J. App. Crys., 1997, vol. 30, pp. 517-525.

    Article  Google Scholar 

  21. B. Clausen, Los Alamos National Lab, Los Alamos, NM, 2004.

  22. [22] P.W. Stephens, J. App. Crys., 1999, vol. 32, pp. 281-289.

    Article  CAS  Google Scholar 

  23. [23] B.A. Hatt, J. Nuc. Matl., 1966, vol. 19, pp. 133-141.

    Article  CAS  Google Scholar 

  24. B. Clausen, PhD. Technical University of Denmark, 1997.

  25. [25] S.R. MacEwen, J. Faber, A.P.L. Turner, Acta Metall., 1983, vol. 31, pp. 657-676.

    Article  CAS  Google Scholar 

  26. [26] M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, T. Lorentzen, J. App. Phys., 1997, vol. 82, pp. 1554-1562.

    Article  CAS  Google Scholar 

  27. [27] D.W. Brown, S.P. Abeln, W.R. Blumenthal, M.A.M. Bourke, M.C. Mataya, C.N. Tome, Metall. Mater. Trans. A, 2005, vol. 36A, pp. 929-939.

    Article  CAS  Google Scholar 

  28. [28] M.R. Daymond, C.N. Tome, M.A.M. Bourke, Acta Mater., 2000, vol. 48, pp. 553-564.

    Article  CAS  Google Scholar 

  29. [29] S.R. Agnew, D.W. Brown, C.N. Tome, Acta Mater., 2006, vol. 54, pp. 4841-4852.

    Article  CAS  Google Scholar 

  30. [30] R.E. Stoller, S.J. Zinkle, J. Nuc. Matl., 2000, vol. 283, pp. 349-352.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy through the Los Alamos National Laboratory and benefited from the use of the Lujan Neutron Scattering Center at LANSCE, LANL. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). AJC acknowledges support by the Center for Advanced Non-Ferrous Structural Alloys (CANFSA), a National Science Foundation Industry/University Cooperative Research Center (I/UCRC) [Award No. 1624836], at the Colorado School of Mines and Iowa State University during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Clarke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 27, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, A.J., Brown, D.W., Clausen, B. et al. Reversion of Post-Shape Memory Effect Twins During Unloading of Uranium-6 wt pct Niobium. Metall Mater Trans A 51, 1614–1624 (2020). https://doi.org/10.1007/s11661-020-05647-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05647-x

Navigation