Skip to main content
Log in

Large Strain Deformation in Uranium 6 Wt Pct Niobium

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The large strain deformation of polycrystalline uranium 6 wt pct niobium (U6Nb) was studied in situ during uniaxial tensile and compressive loading by time-of-flight neutron diffraction. Diffraction patterns were recorded at incremental strains to a maximum of approximately 0.13 tensile and 0.15 compressive true strain. A discrete reorientation of the crystallographic texture under tensile straining between 0.04 and 0.08 true strain is consistent with a previously unobserved mechanical deformation twinning mechanism, identified as either a (100) or (010) mechanical twin system. Beyond this, a continuous texture reorientation towards an (010) crystal orientations indicates that a slip mechanism is likely predominant. An analogous mechanical twin system was not observed in compression at large strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Binary Alloy Phase Diagrams, T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker, eds., ASM INTERNATIONAL, Materials Park, OH, 1990.

  2. B.W. Howlett: J. Nucl. Mater., 1969, vol. 35, pp. 278–92.

    Article  Google Scholar 

  3. K. Tangri and D.K. Chaudhuri: J. Nucl. Mater., 1965, vol. 15, pp. 278–87.

    Article  CAS  Google Scholar 

  4. M. Anagnostidis, M. Colombie, and H. Monti: J. Nucl. Mater., 1963, vol. 26, pp. 67–76.

    Google Scholar 

  5. Y. Takahashi, M. Yamawaki, and K. Yamamoto: J. Nucl. Mater., 1988, vol. 154, pp. 141–44.

    Article  CAS  Google Scholar 

  6. E. Kahana, M. Talianker, and A. Landau: J. Nucl. Mater., 1997, vol. 246, pp. 144–49.

    Article  CAS  Google Scholar 

  7. J.G. Speer and D.V. Edmonds: Acta Metall., 1988, vol. 36, pp. 1015–33.

    Article  CAS  Google Scholar 

  8. K.H. Eckelmeyer, A.D. Romig, and L. Weirick: Metall. Trans. A, 1984, vol. 15A, pp. 1319–30.

    CAS  Google Scholar 

  9. R.A. Vandermeer: Acta Metall., 1980, vol. 28, pp. 383–93.

    Article  CAS  Google Scholar 

  10. R.J. Jackson: Reversible Martensitic Transformations Between Transition Phases of Uranium-Base Niobium Alloys, RFP-1535, Dow Chemical Co., Golden, CO, 1970, 11 pp.

  11. H.L. Yakel: in Physical Metallurgy of Uranium Alloys, Proc. of the 3rd Army Materials Technology, J.J. Burke, D.A. Colling, A.E. Gorum, and J. Greenspan, eds., Brook Hill Publishing Company, Vail, CO, McGraw, 1974, pp. 259–307

  12. J. Lehmann and R.F. Hills: J. Nucl. Mater., 1960, vol. 2, pp. 261–68.

    Article  CAS  Google Scholar 

  13. A.S. Sastri and M.J. Marcinkowski: Metall. Soc. Am. Inst. Min., Metall. Petrol. Eng.—Trans., 1968, vol. 242, pp. 2393–98.

    CAS  Google Scholar 

  14. R.V. Krishnan and L.C. Brown: Metall. Trans., 1973, vol. 4, pp. 423–29.

    Article  CAS  Google Scholar 

  15. T.A. Schroeder, I. Cornelis, and C.M. Wayman: Metall. Trans. A, 1976, vol. 7A, pp. 535–53.

    CAS  Google Scholar 

  16. R.A. Vandermeer, J.C. Ogle, and W.G. Northcutt: Metall. Trans. A, 1981, vol. 12A, pp. 733–41.

    Google Scholar 

  17. D.H. Wood, J.W. Dini, and H.R. Johnson: J. Nucl. Mater., 1983, vol. 114, pp. 199–207.

    Article  CAS  Google Scholar 

  18. Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey: Acta Mater., 1998, vol. 46, pp. 4325–38.

    Article  CAS  Google Scholar 

  19. D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, and D.J. Thoma: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2219–28.

    Article  CAS  Google Scholar 

  20. D.W. Brown, M.A.M. Bourke, P.S. Dunn, R.D. Field, M.G. Stout, D.F. Teter, D.J. Thoma, and S.C. Vogel: in Neutron and X-ray Scattering as Probes of Multiscale Phenomena, Materials Research Society Fall Meeting, S.R. Bhatia, P.G. Khalifah, D.J. Pochan, and P.G. Radaelli, eds., Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2005, vol. 840, pp. 205–10.

  21. R.D. Field, D.W. Brown, and D.J. Thoma: Philos. Mag., 2005, vol. 85, pp. 2593–2609.

    Article  CAS  Google Scholar 

  22. R.D. Field, D.J. Thoma, P.S. Dunn, D.W. Brown, and C.M. Cady: Philos. Mag. A, 2001, vol. 81, pp. 1691–1724.

    Article  CAS  Google Scholar 

  23. A.J. Clarke, R.D. Field, R.J. McCabe, C.M. Cady, R.E. Hackenberg, and D.J. Thoma: Acta Mater., 2008, vol. 56, pp. 2638–48.

    Article  CAS  Google Scholar 

  24. M. Bourke, D. Dunand, and E. Ustundag: Appl. Phys. A, 2002, vol. A74, pp. S1707–09.

    Article  Google Scholar 

  25. N. Shi, M.A.M. Bourke, J.A. Roberts, and J.E. Allison: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2741–53.

    Article  CAS  Google Scholar 

  26. R.B. Vondreele, J.D. Jorgensen, and C.G. Windsor: J. Appl. Crystallogr., 1982, vol. 15, pp. 581–89.

    Article  CAS  Google Scholar 

  27. R.B. Von Dreele: J. Appl. Crystallogr., 1997, vol. 30, pp. 517–25.

    Article  Google Scholar 

  28. P.W. Stephens: J Appl. Crystallogr., 1999, vol. 32, pp. 281–89.

    Article  CAS  Google Scholar 

  29. M. Daymond, M. Bourke, R. Vondreele, B. Clausen, and T. Lorentzen: J. Appl. Phys., 1997, vol. 82, pp. 1554–62.

    Article  CAS  Google Scholar 

  30. M.R. Daymond, M.A.M. Bourke, B. Clausen, and C. Tome: in Proceedings of the 5th International Conference on Residual Stresses, ICRS-5, Linkoping, Sweden, 1997, vol. 1, pp. 577–85.

  31. B. Clausen, M. Bourke, D.W. Brown, and E. Ustundag: Mater. Sci. Eng. A, 2006, vol. 421, pp. 9–14.

    Article  Google Scholar 

  32. S. Rajagopalan, A. Little, M. Bourke, and R. Vaidyanathan: Appl. Phys. Lett., 2005, vol. 86, pp. 081901-1-3.

  33. R.A. Vandermeer, D.A. Carpenter, and A.G. Dobbins: Reversible Strain Mechanisms in Uranium Niobium Alloys near the Monotectoid Composition, Y-2285, Oak Ridge Y-12 Plant, TN, 1983, 18 pp.

  34. B.A. Hatt: J. Nucl. Mater., 1966, vol. 19, pp. 133–41.

    Article  CAS  Google Scholar 

  35. M.R. Barnett, Z. Keshavarz, A.G. Beer, and X. Ma: Acta Mater., 2008, vol. 56, pp. 5–15.

    Article  CAS  Google Scholar 

  36. R.W. Cahn: Acta Metall.,1953, vol. 1, pp. 50–74.

    Google Scholar 

  37. S. Leclercq and C. Lexcellent: J. Mech. Phys. Solids, 1996, vol. 44, pp. 953–57.

    Article  CAS  Google Scholar 

  38. S. Miyazaki, K. Otsuka, and C.M. Wayman: Acta Metall., 1989, vol. 37, pp. 1873–84.

    Article  CAS  Google Scholar 

  39. P. Sittner, P. Lukás, V. Novák, M.R. Daymond, and G.M. Swallowe: Mater. Sci. Eng. A, 2004, vol. 378, pp. 97–104.

    Article  Google Scholar 

  40. A.N. Holden: Physical Metallurgy of Uranium, Addison-Wesley Publishing Co, Reading, MA, 1958, p. 38.

  41. A. Rollett: Modeling the Deformation of Crystalline Solids, TMS Annual Meeting, TMS, Warrendale, PA, 1991, p. 361.

  42. E.A. Calnan and C.J.B. Clews: Philos. Mag. A, 1952, vol. 43, pp. 93–104.

    Google Scholar 

Download references

Acknowledgments

This work has benefited from the use of the Manual Lujan, Jr. Neutron Scattering Center, LANSCE, which is funded by the United States Department of Energy’s Office of Basic Energy Sciences. The Los Alamos National Laboratory is operated by Los Alamos National Security LLC under Department of Energy Contract No. DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don W. Brown.

Additional information

Manuscript submitted May 3, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tupper, C.N., Brown, D.W., Field, R.D. et al. Large Strain Deformation in Uranium 6 Wt Pct Niobium. Metall Mater Trans A 43, 520–530 (2012). https://doi.org/10.1007/s11661-011-0931-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0931-5

Keywords

Navigation