Skip to main content
Log in

Excess Solute Carbon and Tetragonality in As-Quenched Fe-1Mn-C (C:0.07 to 0.8 Mass Pct) Martensite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The carbon distribution behavior and crystal structure of as-quenched martensite in Fe-1Mn-C (C: 0.07 to 0.8 mass pct) steels were quantitatively investigated by atom probe tomography (APT) and X-ray diffraction with Rietveld analysis. APT revealed that the martensite steels contained quantities of carbon in solid solution far beyond its solubility in body-centered cubic (bcc)-Fe in all the alloys investigated; the carbon atoms were non-homogeneously distributed as carbides or aggregates on dislocations due to autotempering. Tetragonality was observed in the steels with interstitial solute carbon concentrations in the range of 0.1 to 0.7 mass pct, but was not evident below 0.1 mass pct. The appearance and disappearance of tetragonality in the low-carbon steels may be explained by the disordered bcc ↔ ordered body-centered tetragonal (bct) mechanism, considering the partial tetragonality due to the heterogeneity of the interstitial solute carbon distribution. The existence of tetragonality in the autotempered low-carbon steels can alternatively be understood by a mechanism based on the kinetic decrease of tetragonality during cooling, where the microscopic strain release is the rate-controlling process. The excess carbon solubility in the autotempered low- and medium-carbon martensite is due to the existence of tetragonal distortions, owing to the slow kinetics of the tetragonality decrease during cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Honda, Z. Nishiyama: Sci. Rep. Tohoku Imp. Univ., 1932, vol. 21, pp. 299-331

    CAS  Google Scholar 

  2. P.M. Kelly: in E. Pereloma and D.V. Edmonds (Eds.), Phase Transformations in Steels, Volume 2: Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, Woodhead Publishing Limited, 2012, p. 12.

  3. H.K.D.H. Bhadeshia and R. Honeycombe: Steels—Microstructure and Properties, 2nd ed., Butterworth-Heinemann, 2017, pp. 142–44.

  4. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-95

    Google Scholar 

  5. G.V. Kurdjumov, A.G. Khachaturyan: Metall. Trans., 1972, vol. 3, pp. 1069-76

    Article  Google Scholar 

  6. G.V. Kurdjumov, A.G. Khachaturyan: Acta Metall., 1975, vol. 23, pp. 1077-88

    Article  Google Scholar 

  7. O.D. Sherby, J. Wadsworth, D.R. Lesuer, C.K. Syn: Mater. Trans., 2008, vol. 49, pp. 2016-27

    Article  CAS  Google Scholar 

  8. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander: Acta Mater., 2011, vol. 59, pp. 5845-58

    Article  CAS  Google Scholar 

  9. L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9970-78

    Article  CAS  Google Scholar 

  10. Y. Lu, H. Yu, R.D. Sisson Jr.: Mater. Sci. & Eng. A, 2017, vol. 700, pp. 592–97

    Article  CAS  Google Scholar 

  11. P.G. Winchell, M. Cohen: Trans. ASM, 1962, vol. 55, pp. 347-61

    CAS  Google Scholar 

  12. M.C. Cadeville, J.M. Friedt, C. Lerner: Metal Phys., 1977, vol. 7, pp. 123-37

    Article  CAS  Google Scholar 

  13. A. Udyansky, J. von Pezold, A. Dick, J. Neugebauer: Phys. Rev. B, 2011, vol. 83, pp. 184112

    Article  CAS  Google Scholar 

  14. Z. Fan, L. Xiao, Z. Jinxiu, K. Mokuang, G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9979-87.

    Article  CAS  Google Scholar 

  15. G.R. Speich: Trans. TMS-AIME, 1969, vol. 245, 2553-64

    CAS  Google Scholar 

  16. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30

    Article  CAS  Google Scholar 

  17. D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, M.K. Miller: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1698-1711

    Article  CAS  Google Scholar 

  18. S. Allain, F. Danoix, M. Goune, K. Hoummada, D. Mangelik: Phil. Mag. Let., 2013, vol. 93, pp. 68-76

    Article  CAS  Google Scholar 

  19. L. Morsdorf, C.C. Tasan, D. Ponge, D. Raabe: Acta Mater., 2015, vol. 95, pp. 366–77

    Article  CAS  Google Scholar 

  20. R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359-68

    Article  CAS  Google Scholar 

  21. H. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65-71

    Article  CAS  Google Scholar 

  22. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippel, H.K.D.H. Bhadeshia: Scripta Mater., 2013, vol. 69, pp. 409–12

    Article  CAS  Google Scholar 

  23. C. Garcia-Mateo, J.A. Jimenez, H.-W. Yen, M.K. Miller, L. Morales-Rivas, M. Kuntz, S.P. Ringer, J.-R. Yang, F.G. Caballero: Acta Mater., 2015, vol. 91, pp. 162-73.

    Article  CAS  Google Scholar 

  24. S. Djaziri, Y. Li, G.A. Nematollahi, B. Grabowski, S. Goto, C. Kirchlechner, A. Kostka, S. Doyle, J. Neugebauer, D. Raabe, G. Dehm: Adv. Mater., 2016, vol. 28, pp. 7753-57.

    Article  CAS  Google Scholar 

  25. W. Sha, L. Chang, G.D.W. Smith, L. Cheng, E.J. Mittemeijer: Surf. Sci., 1992, vol. 266, pp. 416-23

    Article  CAS  Google Scholar 

  26. S. Morito, J. Nishikawa, T. Maki: ISIJ Inter., 2003, vol. 43, pp. 1475–77

    Article  CAS  Google Scholar 

  27. Y. Hirotsu, S. Nagakura: Acta Metall., 1972, vol. 20, pp. 645-54

    Article  CAS  Google Scholar 

  28. K.A. Taylor, G.B. Olson, M. Cohen, J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2749-65

  29. A. Perlade, O. Bouaziz, Q. Furnémont: Mater. Sci. Eng. A, 2003, vol. 356, pp. 145-52

    Article  CAS  Google Scholar 

  30. J.R.G.da Silva, R.B. McLellan: Mater. Sci. Eng. A, 1976, vol. 26, pp. 83-87

    Article  Google Scholar 

  31. H. Abe: Scand. J. Metall., 1984, vol. 13, pp. 226-39

    CAS  Google Scholar 

  32. J. Wilde, A. Cerezo, G.D.W. Smith: Scripta Mater., 2000, vol. 43, pp. 39–48

    Article  CAS  Google Scholar 

  33. Y. Kobayashi, J. Takahashi, K. Kawakami: Ultramicroscopy, 2011, vol. 111, pp. 600–03

    Article  CAS  Google Scholar 

  34. B. Gault, F. Danoix, K. Hoummadad, D. Mangelinck, H. Leitner: Ultramicroscopy, 2012, vol. 113, pp. 182–91

    Article  CAS  Google Scholar 

  35. S. Harjo, T.Kawasaki, Y. Tomota, W. Gong, K. Aizawa, G. Tichy, Z. Shi, and T. Ungar: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4080-92

    Article  CAS  Google Scholar 

  36. L. Cheng, A. Böttger, Th.H. de Keijser, E.J. Mittemeijer: Scripta Metall., vol. 24, 1990, pp.509-14.

    Article  CAS  Google Scholar 

  37. C.S. Roberts: Trans. Am. Inst. Metall. Eng., 1953, vol. 197, pp. 203-04.

    Google Scholar 

  38. W.C. Leslie, The Physical Metallurgy of steels, McGraw-Hill, New York, 1982, Sections 2 and 3

  39. K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2717–37.

  40. M. Kusunoki, S. Nagakura: J. Appl. Cryst., 1981, vol. 14, pp. 329-36

    Article  CAS  Google Scholar 

  41. K. Han, M.J. van Genderen, A. Böttger, H.W. Zandbergen, J. Mittemeijer: Phil. Mag., 2001, vol. 81, pp. 741-57

    Article  CAS  Google Scholar 

  42. M.K. Miller, P.A. Beaven, G.D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.

    Article  Google Scholar 

  43. L. Chang, S.J. Barnard, G.D.W. Smith, in G. Krauss and P.E. Repas (Eds), Fundamentals of Aging and Tempering in Bainitic and Martenstic Steel Products, Warrendale, PA, 1992, pp. 19–28

    Google Scholar 

  44. A. Cochardt, G. Schoeck, H. Wiedersich: Acta Metall., 1955, vol. 3, pp. 533-37

    Article  CAS  Google Scholar 

  45. H. Ohtsuka, V.A. Dinh, T. Ohno, K. Tsuzaki, K. Tsuchiya, R. Sahara, H. Kitazawa, and T. Makamura: Tetsu-to-Hagane, 2014, vol. 100 pp. 1329-38

    Article  CAS  Google Scholar 

  46. P.V. Chirkov, A.A. Mirzoef, D.A. Mirzaev: Phys. Metals and Metallography, 2016, vol. 117, pp. 1138-43

    Article  CAS  Google Scholar 

  47. B. Hutchinson, D. Lindell, M. Barnett: ISIJ Int., 2015, vol. 55, pp. 1114-22.

    Article  CAS  Google Scholar 

  48. T. Tanaka, A.J. Wilkinson: Ultramicroscopy, 2019, vol. 202, pp. 87-99

    Article  CAS  Google Scholar 

  49. T. Tanaka, A.J. Wilkinson: Microsc. Microanal., 2018, vol. 24 (Suppl. 1) pp. 962-63

    Article  Google Scholar 

  50. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31

    Article  CAS  Google Scholar 

  51. Y. Iijima, K. Kimura and K. Hirano: Acta Met., 1988, vol. 36, pp. 2811-20

    Article  CAS  Google Scholar 

  52. J.T. Michalak, H.W. Paxton: Trans. AIME, 1961, vol. 221, pp. 850-57

    CAS  Google Scholar 

  53. S. Harper: Phys. Rev., 1951, vol. 83, pp. 709-12

    Article  CAS  Google Scholar 

  54. C. Wert: Phys. Rev., 1950, vol. 79, pp. 601-05

    Article  CAS  Google Scholar 

  55. R.H. Doremus: Trans. AIME, 1960, vol. 218, pp. 591-605

    CAS  Google Scholar 

  56. H. Abe, T. Suzuki: Trans. ISIJ, 1980, vol. 20, pp. 691-95

    Article  Google Scholar 

  57. A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 2001, vol. 44, pp. 695–700

    Article  CAS  Google Scholar 

  58. G.V. Kurdjumov: J. Iron Steel Inst., 1960, vol. 195, pp. 26-48

    Google Scholar 

  59. J.H. Jang, H.K.D.H. Bhadeshia, D-W Suh: Scripta Mater., 2013, vol. 68, pp. 195–98

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Maruyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 22, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruyama, N., Tabata, S. & Kawata, H. Excess Solute Carbon and Tetragonality in As-Quenched Fe-1Mn-C (C:0.07 to 0.8 Mass Pct) Martensite. Metall Mater Trans A 51, 1085–1097 (2020). https://doi.org/10.1007/s11661-019-05617-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05617-y

Navigation