Skip to main content
Log in

The Microstructural Characterization, Physical and Dynamic Magnetic Properties of (Ni49Fe51)100−xCrx (x = 0,3,7) Thin Sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the effects of Cr on the microstructure, physical, and AC magnetic properties of the Ni49Fe51 alloy was studied. In this respect, three series of thin sheets of (Ni49Fe51)100−xCrx (x = 0, 3, and 7 at. pct) alloys with a final thickness of 120 µm were prepared by means of severe cold rolling and an 1150 °C annealing process at H2 atmosphere. Optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), (200) X-ray pole figure, and magnetic force microscopy (MFM) were employed to study microstructure, texture, and magnetic domain structure of the alloys. The magnetic characteristics of the samples were evaluated using BH-hysteresis loop tracer at a frequency range of 0.5 to 300 Hz. Based on the results obtained, it was shown that the mean magnetic domain width was increased from 1.006 to 1.398 μm for 0 Cr and 7 Cr samples, respectively. Furthermore, the magnitude of the static hysteresis loss increased and the excess and classical eddy current loss decreased for the Cr-added thin sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Davis: ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, USA, 2000

    Google Scholar 

  2. H. Kronmuller, S. Parkin: Handbook of Magnetism and Advanced Magnetic Materials, New York: Wiley, 2007.

    Google Scholar 

  3. P. Ripka: Journal of Magnetism and Magnetic Materials, 2008, Vol. 320, pp. 2466-2473.

    CAS  Google Scholar 

  4. M.F. Littrnann, E.S. Harris: Washington, DC: U.S. Patent and Trademark Office, 1966.

  5. T. Itoh, T. Omori: Washington, DC: U.S. Patent and Trademark Office, 2007.

  6. L. Coutu, L. Chaput, and T. Waeckerle: Journal of magnetism and magnetic materials 2000, Vol. 215, pp. 237-239.

    Google Scholar 

  7. H. Eriksson, A. Salwen: IEEE Transactions on Magnetics, 1977, Vol. 13 pp. 1451-1453.

    Google Scholar 

  8. V. Tsakiris, M. Petrescu: Sci. Bull, University Politehnica of Bucharest, 2007, Vol. 69, pp. 67-78.

    CAS  Google Scholar 

  9. K. Gupta, K. Raina, S. Sinha: Journal of alloys and compounds, 2007, Vol. 429, pp. 357-364.

    CAS  Google Scholar 

  10. R. Casani, W. Klawitter, A. Lykens, F. Ackermann: Journal of Applied Physics, 1966, Vol. 37, pp. 1202-04.

    CAS  Google Scholar 

  11. C.W. Chen: Magnetism and Metallurgy of Soft Magnetic Materials. Courier Corporation, Boston 1977.

    Google Scholar 

  12. R.E. Schramm, R.P. Reed: Metallurgical and Materials Transactions A, 1976, Vol. 7, pp. 359-363.

    Google Scholar 

  13. L. Coutu, P.L. Reydet: Washington, DC: U.S. Patent and Trademark Office, 1998.

  14. Mishra J, Sahni S, Sabat R, Hiwarkar VD, Sahoo SK (2016) Mater Res 20:218-224.

    Google Scholar 

  15. D. Rice, J. Suits, S. Lewis: Journal of Applied Physics, 1976, Vol. 47, pp. 1158-1163.

    CAS  Google Scholar 

  16. W.R. Wieserman, G.E. Schwarze, J. Niedra: 26th Intersociety Energy Conversion Engineering Conference, 1991.

  17. D. Olekšáková, J. Füzer, P. Kollár, S. Roth: Journal of Magnetism and Magnetic Materials, 2013, Vol. 333, pp. 18-21.

    Google Scholar 

  18. Z. Li, K. Yao, D. Li, X. Ni, Z. Lu: Progress in Natural Science: Materials International, 2017, Vol. 27, pp. 588-592.

    CAS  Google Scholar 

  19. G. Bertotti, I.D. Mayergoyz: The science of hysteresis: Hysteresis in materials. Gulf Professional Publishing, Houston, 2006.

    Google Scholar 

  20. G. Bertotti, F. Fiorillo, G. Soardo: Le Journal de Physique Colloques, 1988, Vol. 49, pp. 1915-1919.

    Google Scholar 

  21. F. Brailsford: Physical principles of magnetism, Van Nostrand, New York, 1966.

    Google Scholar 

  22. K. Overshott: IEEE transactions on Magnetics, 1981, Vol. 17, pp. 2698-2700.

    Google Scholar 

  23. H. Williams, W. Shockley, C. Kittel: Physical Review, 1950, Vol. 80, pp. 1090-1904.

    Google Scholar 

  24. R. Pry, C. Bean: Journal of Applied Physics, 1958, Vol. 29, pp. 532-533.

    Google Scholar 

  25. E. Lee: Proceedings of the IEE-Part C: Monographs, 1958, Vol. 105, pp. 337-342.

    Google Scholar 

  26. J. Bishop: Journal of magnetism and magnetic materials, 1985, Vol. 49, pp. 241-249.

    CAS  Google Scholar 

  27. G. Bertotti: IEEE Transactions on magnetics, 1988, Vol. 24, pp. 621-630.

    Google Scholar 

  28. K. Overshott, M. Price: IEEE Transactions on Magnetics, 1982, Vol. 18, pp. 1394-1396.

    Google Scholar 

  29. A. Hubert, R. Schäfer (2008) Magnetic domains: the analysis of magnetic microstructures. Springer, Berlin

    Google Scholar 

  30. D.C. Zipperian: Metallographic handbook, PACE Technologies, Tucson, Arizona, USA, 2011.

    Google Scholar 

  31. B.D. Cullity: Elements of X-ray Diffraction, Second Edition ed., Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1978.

    Google Scholar 

  32. I. Miccoli, F. Edler, H. Pfnür, C. Tegenkamp: Journal of Physics: Condensed Matter, 2015, Vol. 27, pp. 223201.

    CAS  Google Scholar 

  33. A753-08 “Standard Specification for Wrought Nickel-Iron Soft Magnetic Alloys (UNS K94490, K94840, N14076, N14080),” ASTM International, West Conshohocken, PA, 2013.

  34. I. Baker, H. Chang, J. Li: MRS Online Proceedings Library Archive, 2004, Vol. 819, pp. 819.

    Google Scholar 

  35. R.E. Smallman, R.J. Bishop: Modern physical metallurgy and materials engineering. Elsevier, Amsterdam, 1999.

    Google Scholar 

  36. J. Bailey, P.B. Hirsch: Proceedings Mathematical Physical & Engineering Sciences, 1962, Vol. 267, pp. 11-30.

    CAS  Google Scholar 

  37. F. Rhines, B. Patterson: Metallurgical Transactions A, 1982, Vol. 13, pp. 985-993.

    Google Scholar 

  38. S. Gražulis, D. Chateigner, R.T. Downs, A. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail: Journal of Applied Crystallography, 2009, Vol. 42, pp. 726-729.

    Google Scholar 

  39. B. Hutchinson: Materials Science Forum Conference, 2012, Vol. 702, pp. 3-10.

    Google Scholar 

  40. H. Hu: Texture, Stress, and Microstructure, 1974, Vol. 1, pp. 233-258.

    CAS  Google Scholar 

  41. E. Specht, A. Goyal, D. Lee, F. List, D. Kroeger, M. Paranthaman, R. Williams, D. Christen: Superconductor science and technology, 1998, Vol. 11, pp. 945.

    CAS  Google Scholar 

  42. S. Rothman, L. Nowicki, G. Murch: Journal of Physics F: Metal Physics, 1980, Vol. 10, pp. 383.

    CAS  Google Scholar 

  43. M. Čebron, F. Kosel: Strojniški vestnik - Journal of Mechanical Engineering, 2014, Vol. 60, pp. 462-474.

    Google Scholar 

  44. P.A. Beck, H. Hu: Journal of the Minerals, Metals and Materials Society, 1952, Vol. 4, pp. 83-90.

    CAS  Google Scholar 

  45. F. Caleyo, T. Baudin, R. Penelle: The European Physical Journal-Applied Physics, 2002, Vol. 20, pp. 77-89.

    CAS  Google Scholar 

  46. L. Swartzendruber, V. Itkin, C. Alcock: Journal of Phase Equilibria, 1991, Vol. 12, pp. 288-12.

    CAS  Google Scholar 

  47. Cacciamani ADG, Palumbo M, Pasturel A (2010) Intermetallics 1:1148–62.

    Google Scholar 

  48. A. Bradley, A. Jay, A. Taylor: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1937, Vol. 23, pp. 545-557.

    CAS  Google Scholar 

  49. K. Reuter, D.B. Williams, J. Goldstein: Metallurgical Transactions A, 1989, Vol. 20, pp. 719-725.

    Google Scholar 

  50. A. Marucco: Key Engineering Materials Conference, 1991, Vol. 48, pp. 77-90.

    Google Scholar 

  51. J. Albertsen, J. Knudsen, G. Jensen, J. Danon: Meteoritics, 1978, Vol. 13, pp. 379-383.

    Google Scholar 

  52. T. Nagata, J.A. Danon, M. Funaki: Memoirs of National Institute of Polar Research. Special issue, 1987, Vol. 46, pp. 263-282.

    Google Scholar 

  53. J.S. Wróbel, D. Nguyen-Manh, M.Y. Lavrentiev, M. Muzyk, S.L. Dudarev: Physical Review B, 2015, Vol. 91, pp. 024108.

    Google Scholar 

  54. E. Adler, H. Pfeiffer: IEEE Transactions on Magnetics, 1974, Vol. 10, pp. 172-74.

    CAS  Google Scholar 

  55. F. Pfeifer, C. Radeloff: Journal of Magnetism and Magnetic Materials, 1980, Vol. 19, pp. 190-207.

    CAS  Google Scholar 

  56. J. Bishop: British Journal of Applied Physics, 1966, Vol. 17, pp. 1451.

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the help of the Iran National Science Foundation (INSF) for their support. We also acknowledge the help of Nayereh Boroushan from the Iran University of Industries & Mines, Hassan Shirazi from the School of Metallurgy & Materials Engineering, University of Tehran and Fathemeh Mirsafi from Iranian Research Organization for Science & Technology for their kind collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Shahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 1, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathabad, S.M., Shahri, F. & Gholamipour, R. The Microstructural Characterization, Physical and Dynamic Magnetic Properties of (Ni49Fe51)100−xCrx (x = 0,3,7) Thin Sheets. Metall Mater Trans A 51, 323–330 (2020). https://doi.org/10.1007/s11661-019-05504-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05504-6

Navigation