Skip to main content
Log in

Friction Stir Processing of Beta C and Ti-185: A Unique Pathway to Engineer Microstructures for Exceptional Properties in β Titanium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metastable β titanium alloys offer a wide range of attractive property combinations. Conventional processing options have practical limitations in achieving maximum attainable properties and utilizing them to their fullest potential. In the current study, friction stir processing (FSP) of β alloys is explored as a unique path for microstructural engineering. Two metastable β titanium alloys, Ti-1Al-8V-5Fe (Ti-185) and Ti-3Al-8V-6Cr-4Mo-4Zr (Beta C), subjected to FSP with two different tool rotation rates at a constant traverse speed were analyzed in different microstructural conditions. Fully retained β grain structures with grain sizes in the range 4 to 7 µm in Ti-185 and 10 to 15 µm in Beta C were obtained in the as-FSP condition. Post-FSP duplex aging treatment of the low heat input condition resulted in better tensile properties compared to those of high heat input condition, attributable to high number density of nucleation sites generated during FSP. Transmission electron microscopy observations of high-strength Ti-185 sample revealed fine α platelets of length in the range 50 to 130 nm and an aspect ratio in the range 3 to 10, providing significant strengthening contribution. Approximate nose temperatures and nose time calculations of the continuous cooling transformation of β to α were made for various commercial Ti alloys to assess the potential of achieving ultra-high strength levels via FSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Inagaki, T. Takechi, Y. Shirai, and N. Ariyasu: Nippon Steel & Sumitomo Metal Technical Report, 2014, vol. 106, pp. 22.

    Google Scholar 

  2. R. R. Boyer: JOM, 2010, vol. 62, pp. 21-24.

    Article  Google Scholar 

  3. C. Rhodes, M. Mahoney, W. Bingel, R. Spurling, and C. Bampton: Scr. Mater., 1997, vol. 36, pp. 69-75.

    Article  Google Scholar 

  4. G. Liu, L. Murr, C. Niou, J. McClure, and F. Vega: Scr. Mater., 1997, vol. 37, pp. 355-361.

    Article  Google Scholar 

  5. Y. S. Sato, H. Kokawa, M. Enomoto, and S. Jogan: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2429-2437.

    Article  Google Scholar 

  6. Y. S. Sato, H. Takauchi, S. H. C. Park, and H. Kokawa: Mater. Sci. Eng., A, 2005, vol. 405, pp. 333-38.

    Article  Google Scholar 

  7. M. A. Sutton, B. Yang, A. P. Reynolds, and R. Taylor: Mater. Sci. Eng., A, 2002, vol. 323, pp. 160-166.

    Article  Google Scholar 

  8. M. Peel, A. Steuwer, M. Preuss, and P. Withers: Acta Mater., 2003, vol. 51, pp. 4791-4801.

    Article  Google Scholar 

  9. Y. Sato, S. Park, A. Matsunaga, A. Honda, and H. Kokawa: J. Mater. Sci., 2005, vol. 40, pp. 637-642.

    Article  Google Scholar 

  10. S. H. C. Park, Y. S. Sato, and H. Kokawa: Scr. Mater., 2003, vol. 49, pp. 161-166.

    Article  Google Scholar 

  11. C. Meran: Mater Des, 2006, vol. 27, pp. 719-726.

    Article  Google Scholar 

  12. A. J. Ramirez and M. C. Juhas: Mat. Sci. For., 2003, vol. 426, pp. 2999-3004.

    Google Scholar 

  13. T. Lienert: Friction Stir Welding and Processing, ASM International, 2007, pp. 123-54.

  14. A. P. Reynolds, E. Hood, and W. Tang: Scr. Mater., 2005, vol. 52, pp. 491-494.

    Article  Google Scholar 

  15. A. Pilchak, Z. Li, J. Fisher, A. Reynolds, M. Juhas, J. Williams, K. Jata, M. Mahoney, R. Mishra, and T. Lienert: TMS, Warrendale, PA, 2007, pp. 419-427.

    Google Scholar 

  16. A. Pilchak, M. Juhas, and J. Williams: Metall. Mater. Trans. A, 2007, vol. 38, pp. 435-37.

    Article  Google Scholar 

  17. S. Pasta and A. P. Reynolds: Fatigue & Fracture of Eng. Mater. & Struct., 2008, vol. 31, pp. 569-580.

    Article  Google Scholar 

  18. H. Liu, L. Zhou, and Q. Liu: Scr. Mater., 2009, vol. 61, pp. 1008-11.

    Article  Google Scholar 

  19. L. Zhou, H. Liu, P. Liu, and Q. Liu: Scr. Mater., 2009, vol. 61, pp. 596-599.

    Article  Google Scholar 

  20. H. J. Liu, L. Zhou, Y. X. Huang, and Q. W. Liu: Mat. Sci. For, 2010, vol. 638, pp. 1185-1190.

    Google Scholar 

  21. Y. Zhang, Y. S. Sato, H. Kokawa, S. H. C. Park, and S. Hirano: Mater. Sci. Eng., A, 2008, vol. 485, pp. 448-455.

    Article  Google Scholar 

  22. Y. Zhang, Y. S. Sato, H. Kokawa, S. H. C. Park, and S. Hirano: Mater. Sci. Eng., A, 2008, vol. 488, pp. 25-30.

    Article  Google Scholar 

  23. N. Kumar, J. Rodelas, and R. Mishra: TMS Warrendale, 2009, pp. 45–53.

  24. P. Edwards and M. Ramulu: J Eng. Mater. Technol., 2010, vol. 132, pp. 0310061-10.

    Article  Google Scholar 

  25. D. Sanders, P. Edwards, A. Cantrell, K. Gangwar, and M. Ramulu: JOM, 2015, vol. 67, pp. 1054-63.

    Article  Google Scholar 

  26. S. Mironov, Y. Sato, and H. Kokawa: J. Mater. Sci. Technol., 2018, vol. 34, pp. 58-72.

    Article  Google Scholar 

  27. P. Mashinini, I. Dinaharan, J. D. R. Selvam, and D. Hattingh: Mater. Charact., 2018, vol. 139, pp. 328-336.

    Article  Google Scholar 

  28. K. Gangwar and M. Ramulu: Mater Des, 2018, vol. 141, pp. 230-255.

    Article  Google Scholar 

  29. W. Brassington and P. A. Colegrove: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 300-318.

    Article  Google Scholar 

  30. K. Jata and A. P. Reynolds: Metallic Materials with High Structural Efficiency, Springer, Dordrecht, 2004, pp. 391-400.

    Book  Google Scholar 

  31. S. Mironov, Y. Sato, and H. Kokawa: Mater. Sci. Eng., A, 2010, vol. 527, pp. 7498-7504.

    Article  Google Scholar 

  32. S. Nyakana, J. Fanning, and R. Boyer: J. Mater. Eng. perform., 2005, vol. 14, pp. 799-811.

    Article  Google Scholar 

  33. A. Devaraj, V. V. Joshi, A. Srivastava, S. Manandhar, V. Moxson, V. A. Duz, and C. Lavender: Nat. Commun., 2016, vol. 7, pp. 111761-10.

    Article  Google Scholar 

  34. R. S. Mishra, and Z. Y. Ma: Mater. Sci. Eng., R, 2005, vol 50, pp. 1-78.

    Article  Google Scholar 

  35. J. Su, J. Wang, R. S. Mishra, R. Xu, and J. A. Baumann: Mater. Sci. Eng., A, 2013, vol. 573, pp. 67-74.

    Article  Google Scholar 

  36. P. Edwards and M. Ramulu: Sci. Technol. Weld. Join., 2010, vol. 15, pp. 468-472.

    Article  Google Scholar 

  37. A. Rollett, F. Humphreys, G. Rohrer, and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, 2004.

    Google Scholar 

  38. I. Weiss and S. Semiatin: Mater. Sci. Eng., A, 1998, vol. 243, pp. 46-65.

    Article  Google Scholar 

  39. W. Burgers: Physica, 1934, vol. 1, pp. 561-586.

    Article  Google Scholar 

  40. E. Hall: Proc. Phys. Soc B, 1951, vol. 64, pp. 747-753.

    Article  Google Scholar 

  41. N. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.

    Google Scholar 

  42. K. Chia, K. Jung, and H. Conrad: Mater. Sci. Eng., A, 2005, vol. 409, pp. 32-38.

    Article  Google Scholar 

  43. M. Hansen, E. Kamen, H. D. Kessler, and D. McPherson: JOM, 1951, vol. 3, pp. 881-88.

    Article  Google Scholar 

  44. J. Yan: Dissertation. Northwestern University, 2014, pp. 117-26.

  45. E. Collings: Metals Park Ohio, 1984, vol. 3, pp. 134-143.

    Google Scholar 

  46. E. Collings: Metals Park Ohio, 1984, vol. 3, pp. 94-111.

    Google Scholar 

  47. C. Hammond and J. Nutting: Metal Sci., 1977, vol. 11, pp. 474-490.

    Article  Google Scholar 

  48. J. D. Cotton, R. D. Briggs, R. R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J. C. Fanning: JOM, 2015, vol. 67, pp. 1281-1303.

    Article  Google Scholar 

  49. G. Lütjering and J. C. Williams: Titanium, 1st ed., Springer, Berlin, 2003.

    Book  Google Scholar 

  50. F. Prima, J. Debuigne, M. Boliveau, and D. Ansel: J. Mater. Sci. Lett., 2000, vol. 19, pp. 2219-2221.

    Article  Google Scholar 

  51. C. Yolton, F. Froes, and R. Malone: Metall. Mater. Trans. A, 1979, vol. 10, pp. 132-134.

    Article  Google Scholar 

  52. A. Pilchak, W. Tang, H. Sahiner, A. P. Reynolds, and J. Williams: Metall. Mater. Trans. A, 2011, vol. 42, pp. 745-762.

    Article  Google Scholar 

  53. R. S. Mishra, P. De Sarathi, and N. Kumar: Friction Stir Welding and Processing, Springer, Cham ,2014, pp. 189-235.

    Google Scholar 

Download references

Acknowledgments

The work was supported by the U.S. Army Research Laboratory under Cooperative Agreement No. W911NF-13-2-0018. The views, opinions, and conclusions made in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv S. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tungala, V., Dutt, A.K., Choudhuri, D. et al. Friction Stir Processing of Beta C and Ti-185: A Unique Pathway to Engineer Microstructures for Exceptional Properties in β Titanium Alloys. Metall Mater Trans A 50, 4075–4084 (2019). https://doi.org/10.1007/s11661-019-05338-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05338-2

Navigation