Skip to main content
Log in

On the distribution of carbon in martensite

  • Physical Chemistry
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The statistical-mechanics of a generalized perfect lattice gas is used to describe the distribution of interstitial solute atoms in martensite. In untempered martensite, partitioning of mobile interstitial carbon occurs between normal octahedral interstitial sites and those distorted sites around immobile dislocations. The statistics adopted acknowledge the finite number of each kind of site per unit volume of martensite. The dislocation density, fraction of twinned martensite, and the arrangement of dislocations are all input variables in the calculations. The principal quantities calculated are the fraction of carbon atoms segregated to dislocations and the fraction of distorted sites occupied as functions of the carbon content and substructure. The equilibrium distribution of carbon is also determined for tempering conditions where either ∈-carbide or cementite may precipitate. Here, the change in the solubility limit of ferrite with dislocation density is predicted. In untempered low carbon martensites (at 300°K) 85 pct of the carbon will be segregated to dislocations at equilibrium. This value decreases to 60 pct in an 0.80 wt pct C steel. Less than 5 pct of the distorted sites are filled when the dislocation distribution is uniform. Much higher concentrations occur when the long range stresses of the dislocations are relaxed and the mean carbon/dislocation interaction energy increases. Analogous results are presented for the equilibrium among carbides, normal sites, and distorted sites. The predictions of the lattice gas model are in agreement with numerous independent experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Fowler:Statistical Mechanics, Cambridge Univ. Press, London, 1936.

    Google Scholar 

  2. J. H. van der Waals and J. C. Platteeuw:Advances in Chemical Physics, Vol.II, Chap. 1, Interscience Publ., Inc., New York, 1959.

    Google Scholar 

  3. A. W. Cochardt, G. Schoek, and H. Wiedersich:Acta Met., 1955, vol. 3, p. 533.

    Article  CAS  Google Scholar 

  4. R. Chang:Fundamental Aspects of Dislocation Theory, Nat. Bur. Stand. Spec. Publ. 317, 1970.

  5. David Kalish and Morris Cohen: IMD Symp. onStrength and Deformation of Martensite, May 5, 1969, Pittsburgh Pa.; Lockheed-Georgia Company Research Memorandum, ER-11028, 1971.

  6. H. D. Soloman and C. J. McMahon, Jr.:Work Hardening, p. 311, Gordon and Breach Science Publ., New York, 1968.

    Google Scholar 

  7. G. R. Speich:Trans. TMS-AIME, 1969, vol. 245, p. 2553. (b) G. R. Speich: U.S. Steel Corp., Research Center, Monroeville, Pa., private communication, 1969.

    CAS  Google Scholar 

  8. J. M. Genin and P. A. Flinn:Trans. TMS-AIME, 1968, vol. 242, p. 1419.

    CAS  Google Scholar 

  9. J. C. Swartz:Mater. Sci. Eng., 1969–70, vol. 5, p. 30.

    Article  CAS  Google Scholar 

  10. David Kalish and Morris Cohen:Mater. Sci. Eng., 1970, vol. 6, p. 156.

    Article  CAS  Google Scholar 

  11. Morris Cohen:Proc. of the Intern. Conf. on the Strength of Metals and Alloys, Tokyo, 1967, Suppl. toTrans. JIM, 1968, vol. 9, p. xxiii.

  12. J. P. Hirth and J. Lothe:Theory of Dislocations, Chap. 14, McGraw-Hill Book Co., New York, 1968.

    Google Scholar 

  13. D. V. Wilson:Acta Met., 1955, vol. 5, p. 293.

    Article  Google Scholar 

  14. B. A. MacDonald: Ph.D. Thesis, M.I.T., Cambridge, Mass., 1964.

  15. C. J. Barton:Acta Met., 1969, vol. 17, p. 1085.

    Article  CAS  Google Scholar 

  16. R. A. Arndt and A. C. Damask:Acta Met., 1964, vol. 12, p. 341.

    Article  CAS  Google Scholar 

  17. L. Darken and R. Gurry:Physical Chemistry of Metals, McGraw Hill, New York, 1953.

    Google Scholar 

  18. G. Langford and Morris Cohen:Trans. ASM, 1969, vol. 62, p. 623.

    CAS  Google Scholar 

  19. H. J. Rack and Morris Cohen:Mater. Sci. Eng., 1970, vol. 6, p. 320.

    Article  CAS  Google Scholar 

  20. M. L. Rudee and R. A. Huggins:Acta Met., 1964, vol. 12, p. 501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

David Kalish, formerly withLockheed-Georgia Co.

E. M. Roberts, formerly with Lockheed-Georgia Co.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalish, D., Roberts, E.M. On the distribution of carbon in martensite. Metall Trans 2, 2783–2790 (1971). https://doi.org/10.1007/BF02813252

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02813252

Navigation