Skip to main content
Log in

Comparative Study of Mechanical Alloying Induced Nanocrystallization and Amorphization in Ni-Nb and Ni-Zr Systems

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The nanocrystallization and amorphization processes in Ni60Nb40 and Ni60Zr40 binary alloys during mechanical alloying (MA) were studied in detail. The mechanical alloying behavior of these alloy systems was compared with respect to the rate of refinement of grain size, ultimate grain size, and rate of amorphization reaction. For both compositions, MA leads to the refinement of grain size and enhancement of internal strain, followed by the amorphization reaction. The higher melting temperature metal Nb exhibits smaller grain size and greater internal strain, although the Ni and Nb grain size approach a similar value of ~15 nm after 20 hours of milling time. The refinement of grain size and enhancement of internal strain was observed to occur with a slower rate during MA of Ni60Zr40 alloy compared to Ni60Nb40 alloy. In all cases, an ultrafine layered structure with a typical thickness of 30 nm, containing nanoscale size grains with a typical size of 15 nm and a high density of dislocations, develops prior to the amorphization reaction. This observation suggests that numerous high-speed diffusion paths such as grain boundaries and dislocations are necessary to allow a high diffusion rate at low temperature and therefore permits the amorphization reaction to take place kinetically. The Ni-Zr system is a better glass former in MA than Ni-Nb system; i.e., the start time of amorphization reaction for Ni60Zr40 was about half that for Ni60Nb40. These results were discussed in terms of physical and chemical characteristics of the constituent elements of the alloy systems. Furthermore, the thermodynamically stable phase in each system was predicted using a semi-empirical Miedema model, and the results were compared with the structure formed in MA of Ni-Zr and Ni-Nb powder mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ΔG :

Gibbs free energy change

ΔH :

chemical enthalpy change

ΔS :

chemical entropy change

X :

mole fraction

V :

molar volume

n ws :

electron density

\( f_{B}^{A} \) :

degree to which A is surrounded by B

\( f_{A}^{B} \) :

degree to which B is surrounded by A

K :

bulk modulus

G :

shear modulus

H :

hardness

Q * :

activation energy for diffusion

Z :

number of valence electrons

E :

structural energy

T :

temperature

D :

grain size

b :

Burger vector

r o :

mean nearest-neighbor distance

P, Q, and R * :

empirical constants

λ :

X-ray wavelength

β :

diffraction peak width at half-maximum intensity

γ :

empirical parameter

α :

topological disorder parameter

ε :

internal strain

θ :

diffraction angle

\( \Upphi^{ * } \) :

work function of constituent elements

A, B :

element

sol:

solution

m:

melting point

chem:

chemical

e:

elastic

str:

structural

min:

minimum

am:

amorphous

ref:

reference

References

  1. C.Y. Chung, M. Zhu, and C.H. Man: Intermetallics, 2002, vol. 10, pp. 865–71.

    Article  CAS  Google Scholar 

  2. M. Zhu, M. Qi, A.Q. He, H.X. Sui, and W.G. Liu: Acta Metall. Mater., 1994, vol. 42, pp. 1893–99.

    Article  CAS  Google Scholar 

  3. J. Eckert, J.C. Holzer, C.E. Kril, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

    Article  CAS  Google Scholar 

  4. A. Benghalem and D.G. Morris: Acta Metall. Mater., 1994, vol. 42, pp. 4071–81.

    Article  CAS  Google Scholar 

  5. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Adv. Powder Metall., 1989, vol. 1, pp. 111–22.

    Google Scholar 

  6. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Metall. Trans. A, 1990, vol. 21, pp. 2333–37.

    Article  Google Scholar 

  7. F.A. Mohamed and Y. Xun: Mater. Sci. Eng. A, 2003, vol. 354, pp. 133–39.

    Article  Google Scholar 

  8. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.

    Article  CAS  Google Scholar 

  9. F.A. Mohamed and Y. Xun: Mater. Sci. Eng. A, 2003, vol. 358, pp. 178–85.

    Article  Google Scholar 

  10. C.C. Koch: Nanostruct. Mater., 1993, vol. 2, pp. 109–29.

    Article  CAS  Google Scholar 

  11. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  12. R.B. Schwarz, R.R. Petrich, and C.K. Saw: J. Non-Cryst. Solids., 1985, vol. 76, pp. 281–302.

    Article  CAS  Google Scholar 

  13. W.L. Johnson: Prog. Mater. Sci., 1986, vol. 30, pp. 81–134.

    Article  CAS  Google Scholar 

  14. W.L. Johnson: Mater. Sci. Eng., 1988, vol. 97, pp. 1–13.

    Article  CAS  Google Scholar 

  15. I. Manna, P. Nandi, B. Bandyopadhyay, K. Ghoshray, and A. Ghoshray: Acta Mater., 2004, vol. 52, pp. 4133–42.

    Article  CAS  Google Scholar 

  16. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough: Appl. Phys. Lett., 1983, vol. 43, pp. 1017–19.

    Article  CAS  Google Scholar 

  17. F. Petzoldt, B. Scholz, and H.D. Kunze: Mater. Lett., 1987, vol. 5, pp. 280–84.

    Article  CAS  Google Scholar 

  18. E. Hellstern and L. Schultz: Appl. Phys. Lett., 1986, vol. 48, pp. 124–26.

    Article  CAS  Google Scholar 

  19. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  20. S. Bera, S. Mazumdar, M. Ramgopal, S. Bhattacharyya, and I. Manna: J. Mater. Sci., 2007, vol. 42, pp. 3645–50.

    Article  CAS  Google Scholar 

  21. A.R. Miedema, F.R. de Boer, and R. Boom: J. Phys. B, 1981, vol. 103, pp. 67–81.

    CAS  Google Scholar 

  22. L.M. Di, H. Bakker, P. Barczy, and Z. Gacsi: Acta Metall. Mater., 1993, vol. 41, pp. 2923–32.

    Article  CAS  Google Scholar 

  23. H. Bakker: J. Less-Common Met., 1985, vol. 105, pp. 129–38.

    Article  CAS  Google Scholar 

  24. P.K. Ray, M. Akinc, and M.J. Kramer: J. Alloys Compd., 2010, vol. 489, pp. 357–61.

    Article  CAS  Google Scholar 

  25. R.F. Zhang and B.X. Liu: Appl. Phys. Lett., 2002, vol. 81, pp. 1219–21.

    Article  CAS  Google Scholar 

  26. A.R. Miedema, P.F. de Chatel, and F.R. de Boer: Physica, 1980, vol. 100B, pp. 1–28.

    Google Scholar 

  27. N.K. Mukhopadhyay, D. Mukherjee, S. Dutta, R. Manna, D.H. Kim, and I. Manna: J. Alloy. Compd., 2008, vol. 457, pp. 177–84.

    Article  CAS  Google Scholar 

  28. P.I. Loeff, A.W. Weeber, and A.R. Miedema: J. Less-Common Met., 1988, vol. 140, pp. 299–305.

    Article  CAS  Google Scholar 

  29. T. Mousavi, F. Karimzadeh, and M.H. Abbasi: Mater. Lett., 2009, vol. 63, pp. 786–88.

    Article  CAS  Google Scholar 

  30. G.J. Vander-Kolk, A.R. Miedema, and A.K. Niessen: J. Less-Common Met., 1988, vol. 145, pp. 1–17.

    Article  CAS  Google Scholar 

  31. N. Gao and W.S. Lai: J. Phys. Condens. Matter, 2007, vol. 19, pp. 1–12.

    CAS  Google Scholar 

  32. E. Hellstern, H.J. Fechet, Z. Fu, and W.L. Johnson: J. Appl. Phys., 1989, vol. 65, pp. 305–10.

    Article  CAS  Google Scholar 

  33. T. Nasu, K. Nagaoka, S. Takahashi, E. Suganuma, T. Sekiuchi, T. Fukunago, and K. Suzuki: Mater. Trans. JIM, 1989, vol. 30, pp. 620–23.

    CAS  Google Scholar 

  34. R. Bormann and R. Busch: New Materials by Mechanical Alloying Techniques, DGM Informationsgesellschaft, Oberursel, Germany, 1988, pp. 73–78.

    Google Scholar 

  35. S.K. Pabi, D. Das, T.K. Mahapatra, and I. Manna: Acta Mater., 1998, vol. 46, pp. 3501–10.

    Article  CAS  Google Scholar 

  36. O. Haruyama and N. Asahi: J. Alloys Compd., 1993, vol. 194, pp. 361–71.

    Article  CAS  Google Scholar 

  37. J. Eckert, L. Schultz, E. Hellstern, and K. Urban: J. Appl. Phys., 1988, vol. 64, pp. 3224–28.

    Article  CAS  Google Scholar 

  38. F. Petzoldt, B. Scholz, and H.D. Kunze: Mater. Sci. Eng., 1988, vol. 97, pp. 25–29.

    Article  CAS  Google Scholar 

  39. R. Bruning, Z. Altounnian, J.O. Strom-Olsen, and L. Schultz: Mater. Sci. Eng., 1988, vol. 97, pp. 317–20.

    Article  Google Scholar 

  40. C. Suryanarayana, T. Klassen, and E. Ivanov: J. Mater. Sci., 2011, vol. 46, pp. 6301–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Enayati.

Additional information

Manuscript submitted August 24, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enayati, M.H., Dastanpoor, E. Comparative Study of Mechanical Alloying Induced Nanocrystallization and Amorphization in Ni-Nb and Ni-Zr Systems. Metall Mater Trans A 44, 3984–3998 (2013). https://doi.org/10.1007/s11661-013-1717-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1717-8

Keywords

Navigation