Skip to main content
Log in

Abnormal Anisotropic Dilatation During Bainitic Transformation of Ausformed Austenite

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

There is significant anisotropic dilatation during bainitic transformation from plastically deformed austenite in a structurally and chemically homogenous alloy with no externally applied stress. The abnormal dilatation was found to be due to pronounced variant selection in a specific-textured austenite based on electron backscatter diffraction analysis and X-ray diffraction. A general rule of variant selection has been proposed, that the favored variants within an austenite grain usually belong to the same Bain group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Y. Liu, D. Wang, F. Sommer, E.J. Mittemeijer, Acta Mater. 2008, vol. 56, pp. 3833-3842.

    Article  Google Scholar 

  2. J. Zhu, R. Ding, J. He, Z. Yang, C. Zhang, H. Chen, Scirpta Mater. 2017, vol. 136, pp. 6-10.

    Article  Google Scholar 

  3. K. Zhu, C. Magar, M.X. Huang, Scripta Mater. 2017, vol. 134, pp. 11-14.

    Article  Google Scholar 

  4. D. Suh, C. Oh, H.N. Han, S. Kim, Acta Mater. 2007, vol. 55, pp. 2659-2669.

    Article  Google Scholar 

  5. T.A. Kop, J. Sietsma, S. van der Zwaag, Mater. Sci. Tech-Lond. 2001, vol. 17, pp. 1569-1574.

    Article  Google Scholar 

  6. M. Zhou, G. Xu, L. Wang, Z. Xue, H. Hu, Met. Mater. Int. 2015, vol. 21, pp. 985-990.

    Article  Google Scholar 

  7. H. Fan, A. Zhao, Q. Li, H. Guo, J. He, Int. J. Min. Met. Mater. 2017, vol. 24, pp. 264-270.

    Article  Google Scholar 

  8. H. Hu, H.S. Zurob, G. Xu, D. Embury, G.R. Purdy, Mater. Sci. Eng. A 2015, vol. 626, pp. 34-40.

    Article  Google Scholar 

  9. J. He, A. Zhao, Y. Huang, C. Zhi, F. Zhao, Materials Today: Proceedings 2015, vol. S2, pp. 289-294.

    Article  Google Scholar 

  10. W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, S.Y. Zhang, Acta Mater. 2013, vol. 61, pp. 4142-4154.

    Article  Google Scholar 

  11. T.S. Wang, M. Zhang, Y.H. Wang, J. Yang, F.C. Zhang, Scirpta Mater. 2013, vol. 68, pp. 162-165.

    Article  Google Scholar 

  12. W. Gong, Y. Tomota, M.S. Koo, Y. Adachi, Scirpta Mater. 2010, vol. 63, pp. 819-822.

    Article  Google Scholar 

  13. J. He, A. Zhao, C. Zhi, H. Fan, Scirpta Mater. 2015, vol. 107, pp. 71-74.

    Article  Google Scholar 

  14. H.K.D.H. Bhadeshia, Sci. Technol. Adv. Mat. 2013, vol. 14, pp. 014202.

    Article  Google Scholar 

  15. C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 2003, vol. 43, pp. 1238-1243.

    Article  Google Scholar 

  16. W.Z. Zhang, G.C. Weatherly, Acta Mater. 1998, vol. 46, pp. 1837-1847.

    Article  Google Scholar 

  17. P.H. Shipway, H.K.D.H. Bhadeshia, Mater. Sci. Tech-Lond. 1995, vol. 11, pp. 1116-1128.

    Article  Google Scholar 

  18. X.F. Gu, T. Furuhara, W.Z. Zhang, J. Appl. Crystallogr. 2016, vol. 49, pp. 1099-1106.

    Article  Google Scholar 

  19. W. Gong, Y. Tomota, M.S. Koo, Y. Scirpta Mater. 2010, vol. 63, pp. 819-822.

    Article  Google Scholar 

  20. H. Beladi, Y. Adachi, I. Timokhina, P. Hodgson, Scirpta Mater. 2009, vol. 60, pp. 455-458.

    Article  Google Scholar 

  21. X.F. Gu, W.Z. Zhang, D. Qiu, Acta Mater. 2011, vol. 59, pp. 4944-4956.

    Article  Google Scholar 

  22. G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 2012, vol. 60, pp. 1139-1148.

    Article  Google Scholar 

  23. G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, J Alloy Compd. 2013, vol. 577, pp. 528-532.

    Article  Google Scholar 

  24. T. Furuhara, T. Chiba, T. Kaneshita, Huidong Wu, G. Miyamoto, Metall. Mater. Trans. A. 2017, vol. 48, pp. 2739–2752.

    Article  Google Scholar 

Download references

H. Chen acknowledges financial support from Beijing Natural Science Foundation (2182024), the National Natural Science Foundation of China (Grant 51501099), National Key R&D program of China (2016YFB0300104), and National Young 1000-Talents Program (D1101073). Z.-G. Yang acknowledges financial support from the National Natural Science Foundation of China (Grant 51771100). C. Zhang acknowledges financial support from the National Natural Science Foundation of China (Grant 2015CB654802), the National Magnetic Confinement Fusion Energy Research Project of China (Grant 2015GB118001), and Fund of Key Laboratory of Advanced Materials of Ministry of Education (Grant 2017AML09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Manuscript submitted August 27, 2018.

Appendix

Appendix

See Table A1 and Figures A1 through A3.

Table A1 Twelve Variants of the N–W OR for γ to α Transformation
Fig. A1
figure 5

Compression direction (CD) inverse pole figure of retained austenite

Fig. A2
figure 6

The N–W variants of the {0 0 1} bainitic ferrite pole figure with respect to their parent austenite of (0 0 1) standard stereographic projection

Fig. A3
figure 7

Sketch of shape change from austenite unit sphere to bainitic ferrite in crystal space

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Du, J., Zhang, W. et al. Abnormal Anisotropic Dilatation During Bainitic Transformation of Ausformed Austenite. Metall Mater Trans A 50, 540–546 (2019). https://doi.org/10.1007/s11661-018-5038-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5038-9

Navigation