Skip to main content
Log in

Comprehensive analysis of the dilatation during bainitic transformation under stress

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The thermal simulation experiments on bainitic transformation were conducted on Gleeble 3800. The microstructures of specimens were examined by scanning electron microscopy. The main purpose is to investigate the relationship between the dilatation of specimens and bainitic transformation under stress. Results show that the radial strain cannot represent the real amount of bainitic transformation under stress because the radial strain contains both shear and dilatational components of invariant plane strain. In this case, the volume strain, which eliminates the influence of the shear components, should be used to analyze the amount of bainitic transformation under stress. In addition, the radial strain should not be used for the investigation of the kinetics of bainitic transformation under stress. For bainitic transformation without stress, the radial strain of the specimen can represent the amount of bainite, and can be used for the analysis of the kinetics of bainitic transformation; so it is not necessary to measure the volume strain. The present study clarifies the relationship between dilatation and the bainitic transformation under stress, and provides a useful reference to the analysis of bainitic transformation under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. K. D. H. Bhadeshia and J. W. Christian, Metall. Trans. A 21, 767 (1990).

    Article  Google Scholar 

  2. H. K. D. H Bhadeshia, Mat. Sci. Eng. A 273, 58 (1999).

    Article  Google Scholar 

  3. G. Spanos, H. S. Fang, and H. I. Aaronson, Metall. Trans. A 21, 1381 (1990).

    Article  Google Scholar 

  4. X. Y. Long, F. C. Zhang, J. Kang, B. Lv, and X. B. Shi, Mat. Sci. Eng. A 594, 344 (2014).

    Article  Google Scholar 

  5. L. C. Chang, Mat. Sci. Eng. A 368, 175 (2004).

    Article  Google Scholar 

  6. L. Y. Lan, X. W. Kong, and C. L. Qiu, Mater. Charact. 105, 95 (2015).

    Article  Google Scholar 

  7. Y. L. Liang, Y. L. Yi, S. L. Long, and Q. B. Tan, J. Mater. Eng. Perform. 23, 4251 (2014).

    Article  Google Scholar 

  8. H. J. Hu, H. S. Zurob, G. Xu, D. Embury, and G. R. Purdy, Mater. Sci. Eng. A 626, 34 (2015).

    Article  Google Scholar 

  9. G. Xu, F. Liu, L. Wang, and H. J. Hu, Scr. Mater. 68, 833 (2013).

    Article  Google Scholar 

  10. H. K. D. H Bhadeshia, S. A. David, J. M. Vitek, and R. W. Reed, Mater. Sci. Technol. 7, 686 (1991).

    Article  Google Scholar 

  11. A. Matsuzaki, H. K. D. H Bhadeshia, and H. Harada, Acta Metall. Mater. 42, 1081 (1994).

    Article  Google Scholar 

  12. K. Hase, C. Garcia-Mateo, and H. K. D. H. Bhadeshia, Mater. Sci. Technol. 20, 1499 (2004).

    Article  Google Scholar 

  13. M. Umemoto, S. Bando and I. Tamura, Proc. Int. Conf. on Martensitic Transformations, p.595, Japan. Inst. Met., Sendai, Japan (1986).

    Google Scholar 

  14. G. R. Srinivasan and C. M. Wayman, Acta Metall. 16, 621 (1968).

    Article  Google Scholar 

  15. B. P. J. Sandvik, Metall. Mater. Trans. A 13, 777 (1982).

    Article  Google Scholar 

  16. H. K. D. H. Bhadeshia, Bainite in Steels, 2nd ed., p.48, The Institute of Materials, London, UK (2001).

    Google Scholar 

  17. H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 378, 34 (2004).

    Article  Google Scholar 

  18. P. H. Shipway and H. K. D. H. Bhadeshia, Mater. Sci. Eng. A 201, 143 (1995).

    Article  Google Scholar 

  19. M. C Uslu, D. Canadinc, H-G. Lambers, S. Tschumak, and H. J. Maier, Modelling Simul. Mater. Sci. Eng. 19, 045007 (2011).

    Article  Google Scholar 

  20. S. Kundu, K. Hase, and H. K. D. H. Bhadeshia, Proc. R. Soc. A 463, 2309 (2007).

    Article  Google Scholar 

  21. W. Gong, Y. Tomota, M. S. Koo, and Y. Adachi, Scripta Mater. 63, 819 (2010).

    Article  Google Scholar 

  22. W. Gong, Y. Tomota, Y. Adachi, A. M. Paradowska, J. F. Kelleher, and S. Y. Zhang, Acta Mater. 61, 4142 (2013).

    Article  Google Scholar 

  23. F. Liu, G. Xu, Y. L. Zhang, H. J. Hu, L. X. Zhou, and Z. L. Xue, Int. J. Min. Met. Mater. 20, 1060 (2013).

    Article  Google Scholar 

  24. R. K. Dutta, M. Amirthalingam, M. J. M. Hermans, and I. M. Richardson, Mater. Sci. Eng. A 559, 86 (2013).

    Article  Google Scholar 

  25. Y. C. Liu, F. Sommer, and E. J. Mittemeijer, Acta Mater. 57, 2858 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Mx., Xu, G., Wang, L. et al. Comprehensive analysis of the dilatation during bainitic transformation under stress. Met. Mater. Int. 21, 985–990 (2015). https://doi.org/10.1007/s12540-015-2348-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-2348-y

Keywords

Navigation