Skip to main content
Log in

Time-Dependent Evolution of Ti-Bearing Oxide Inclusions During Isothermal Holding at 1573 K (1300 °C)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-bearing oxide inclusions are utilized to enhance the properties of steel used in shipbuilding, multi-purpose gas carriers, and pipelines in accordance with the principles of oxide metallurgy. Conventionally, Ti-bearing oxide inclusions have been assumed to be stable during isothermal holding. The authors propose the possibility of modifying Ti-bearing oxide inclusions by appropriate heat treatment. To provide fundamental information on the evolution of Ti-bearing inclusions in solid steel during isothermal holding, the effect of the isothermal holding time on their evolution at 1573 K (1300 °C) was studied systematically. For heterogeneous phase Al+Ti oxide in the as-cast alloys, the composition and size distribution were maintained during isothermal holding. In contrast, homogeneous phase Al-Ti oxide in the as-cast alloys changed to a heterogeneous oxide consisting of an Al-rich part and a Ti-rich part and its shape changed from spherical to irregular. The composition of the Al-Ti oxide changed upon isothermal holding for 0.5 hour, and it occurred earlier in the Al-Ti oxide with a higher Al content. The evolution mechanism is considered to involve the precipitation of Al2O3 from the Al-Ti oxide owing to crystallization of glassy oxide during isothermal holding. The results challenge the long-held opinion that Ti-bearing oxide inclusions are maintained in solid steel during isothermal holding, which is the first step toward modifying oxide inclusions by heat treatment as a new concept in oxide metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Zhang, H. Terasaki, and Y. Komizo: Acta Materialia, 2010, 58, 1369-1378.

    Article  Google Scholar 

  2. Y. Hou, W. Zheng, Z. Wu, G. Li, N. Moelans, M. Guo, and B. S. Khan: Acta Materialia, 2016, 118, 8-16.

    Article  Google Scholar 

  3. J. Shim, Y. Suh, Y. Cho, J. Shim, J. Byun, and D. Lee: Acta Materialia, 2001, 49, 2115-2122.

    Article  Google Scholar 

  4. J. M. Gregg, and H. K. D. Bhadeshia: Acta Materialia, 1997, 45, 739-748.

    Article  Google Scholar 

  5. J. Byun, J. Shim, Y. Cho, and D. Lee: Acta Materialia, 2003, 51, 1593-1606.

    Article  Google Scholar 

  6. J. Shim, Y. Cho, S. Chung, J. Shim, and D. Lee: Acta Materialia, 1999, 47, 2751-2760.

    Article  Google Scholar 

  7. H. Mabuchi, R. Uemori, and M. Fujioka: ISIJ Int., 1996, 36, 1406-1412.

    Article  Google Scholar 

  8. J. L. Lee, and Y. T. Pan: ISIJ Int., 1995, 35, 1027-1033.

    Article  Google Scholar 

  9. Y. Kang, J. Jang, J. Park, and C. Lee: Met. Mater. Int., 2014, 1, 119-127.

    Article  Google Scholar 

  10. Y. Li, J. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong: Journal of Alloys and Compounds, 2016, 673, 28-37.

    Article  Google Scholar 

  11. Takahashi T, Sakae T, Yoshida T (1967) Tetsu-to-Hagané 53:342-49.

    Article  Google Scholar 

  12. K. Takano, R. Nakao, S. Fukuoto, T. Tsutiyama, and S. Takaki: Tetsu-to-Hagané, 2003, 89, 616-622.

    Article  Google Scholar 

  13. H. Shibata, T. Tanaka, K. Kimura, and S. Kitamura: Ironmaking Steelmaking, 2010, 37, 522-528.

    Article  Google Scholar 

  14. Y. Ren, L. Zhang, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, 48, 2281-2292.

    Article  Google Scholar 

  15. H. Shibata, K. Kimura, T. Tanaka, and S. Kitamura: ISIJ Int., 2011, 51, 1944-1950.

    Article  Google Scholar 

  16. K. Kim, S.J. Kim, H. Shibata, and S. Kitamura: ISIJ Int., 2014, 54, 2144-2153.

    Article  Google Scholar 

  17. K. Kim, H. Shibata, and S. Kitamura: ISIJ Int., 2014, 54, 2678-2686.

    Article  Google Scholar 

  18. C. Liu, K. Kim, S. Kim, J. Li, S. Ueda, X. Gao, H. Shibata, and S. Kitamura: Metall. Mater. Trans. B, 2015, 46, 1875-1884.

    Article  Google Scholar 

  19. C. Liu, S. Yang, J. Li, H. Ni, and X. Zhang: Metall. Mater. Trans. B, 2017, 48, 1348-1357.

    Article  Google Scholar 

  20. F. Ruby-Meyer, J. Lehmann, and H. Gaye: Scand. J. Metall., 2000, 29, 206-212.

    Article  Google Scholar 

  21. I. Jung, S. A. Decterov, and A. D. Pelton: ISIJ Int., 2004, 44, 527-536.

    Article  Google Scholar 

  22. I. Jung, G. Eriksson, P. Wu, and A. D. Pelton: ISIJ Int., 2009, 49, 1290-1297.

    Article  Google Scholar 

  23. Y. Kang, and J. Lee: ISIJ Int., 2017, 57, 1665-1667.

    Article  Google Scholar 

  24. H. Matsuura, C. Wang, G. H. Wen, and S. Sridhar: ISIJ Int., 2007, 47, 1265-1274.

    Article  Google Scholar 

  25. C. Wang, N. T. Nufher, and S. Sridhar: Metall. Mater. Trans. B, 2009, 40, 1005-1021.

    Article  Google Scholar 

  26. C. Wang, N. T. Nufher, and S. Sridhar: Metall. Mater. Trans. B, 2009, 40, 1022-1034.

    Article  Google Scholar 

  27. C. Wang, N. T. Nufher, and S. Sridhar: Metall. Mater. Trans. B, 2010, 41, 1084-1094.

    Article  Google Scholar 

  28. C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi, and S. Sridhar: ISIJ Int., 2011, 51, 375-381.

    Article  Google Scholar 

  29. M. Li, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2017, 48, 1915-1923.

    Article  Google Scholar 

  30. M. Nagano, S. Nagashima, H. Maeda, and A. Kato: Ceramics Int., 1999, 25, 681-687.

    Article  Google Scholar 

  31. C. Xuan, A. V. Karasev, and P. G. Jönsson,: ISIJ Int., 2016, 56, 1204-1209.

    Article  Google Scholar 

  32. C. Xuan, A. V. Karasev, P. G. Jönsson, and K. Nakajima: Steel Research Int., 2017, 88, 262-270.

    Article  Google Scholar 

  33. K. Nakajima: Tetsu-to-Hagané, 1994, 80, 383-388.

    Article  Google Scholar 

  34. M. Humenik, and W. D. Kingery: J. Am. Ceram. Soc., 1954, 37, 18-23.

    Article  Google Scholar 

  35. H. Ito, M. Hino, and S. Ban-ya: Tetsu-to-Hagané, 1997, 83, 773-778.

    Article  Google Scholar 

  36. W. Y. Cha, T. Miki, Y. Sasaki, and M. Hino: ISIJ Int., 2008, 48, 729-738.

    Article  Google Scholar 

  37. K. Yamamoto, T. Hasegawa, and J. Takamura: Tetsu-to-Hagané, 1993, 79, 1169-1175.

    Article  Google Scholar 

  38. Y. Kang and H. Lee: ISIJ Int., 2010, 50, 501-508.

    Article  Google Scholar 

  39. M. Jiang, X. H. Wang, Z. Y Hu, K. P. Wang, C. W. Yang, and S. R. Li: Materials Characterization, 2015, 108, 58-67.

    Article  Google Scholar 

  40. Q. Huang, X. Wang, M. Jiang, Z.Hu, and C. Yang: Steel Research Int., 2015, 87, 445-455.

    Article  Google Scholar 

  41. Z. Yang, F. Wang, S. Wang, and B. Song: Steel Research. Int., 2008, 79, 390-395.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Xiaojun Hu and Dr. Huijing Cheng in the State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing for their assistance in the analysis by automatic SEM-EDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumitaka Tsukihashi.

Additional information

Manuscript submitted June 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Matsuura, H. & Tsukihashi, F. Time-Dependent Evolution of Ti-Bearing Oxide Inclusions During Isothermal Holding at 1573 K (1300 °C). Metall Mater Trans A 50, 863–873 (2019). https://doi.org/10.1007/s11661-018-5015-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5015-3

Navigation