Skip to main content
Log in

Taguchi Analysis of Relation Between Tensile Strength and Interfacial Phases Quantified via Image Processing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Quantitative analysis was performed via image processing to identify the relationship between the tensile strength and the thickness of the CrxBy phase layer at the interface of brazed 304 stainless steel with Ni-based filler metal (MBF20). The experimental design was based on the Taguchi method to determine the relative contributions of the processing conditions, including the brazing temperature, heating rate, holding time, and filler metal thickness. The CrxBy phase at the brazement interface was extracted by an image-processing method from backscattered electron imaging; the numerically defined thicknesses of the CrxBy phase layers developed under varied processing conditions were calculated. The tensile strengths at temperatures of 25 °C and 650 °C were measured for specimens brazed under identical experimental conditions based on the Taguchi method and the post-tensile testing fracture surfaces were analyzed. Regarding the relationship between the thickness of the CrxBy phase layer, as determined through the image processing of the microstructure, and the tensile strength at 25 °C, thicker CrxBy layers deteriorated the tensile strength of the brazement interfaces. Although a slight discrepancy occurred in the brazement tensile strengths between the testing temperatures of 25 °C and 650 °C, the elevated temperature during tensile testing affected the brazed interface microstructure; with this consideration, the overall results for both tensile strength tests corresponded to the quantitatively analyzed CrxBy phase layer thicknesses. From the relationship between CrxBy layer thickness and tensile strength, the heating rate is the most effective processing condition to achieve high bonding strength, because changes in heating rate compared to those of other processing conditions have the greatest effect in changing the CrxBy phase layer thicknesses and tensile strength. Therefore, the results confirmed that the image-processing method enabled accurate quantitative analysis of the microstructure, permitting prediction of the mechanical strength of the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. Q. Li, G. Flamant, X. Yuan, P. Neveu, and L. Luo: Renew Sust Energ Rev, 2011, vol. 15, pp. 4855-75.

    Article  Google Scholar 

  2. D.L. Olson: ASM Handbook: Welding, Brazing, and Soldering. ASM International, Ohio, 1993.

    Google Scholar 

  3. M.M. Schwartz: Brazing. ASM International, Ohio, 2003.

    Google Scholar 

  4. 4. A. Rabinkin: Sci Technol Weld Joi, 2004, vol. 9, pp. 181-99.

    Article  Google Scholar 

  5. 5. W. Jiang, J. Gong, and S.-T. Tu: Mater Des, 2010, vol. 31, pp. 648-53.

    Article  Google Scholar 

  6. J.R. Davis: Stainless Steels. ASM International, Ohio, 1994.

    Google Scholar 

  7. 7. A. Rabinkin, E. Wenski, and A. Ribaudo: Weld J, 1998, vol. 77, pp. 66-75.

    Google Scholar 

  8. A. Rabinkin and H. Liebermann: Rapidly Solidified Alloys: Processes, Structures and Properties, and Applications, H.H. Liebermann, ed., Decker, New York, 1993.

  9. A. Rabinkin: Proceedings of the International Brazing and Soldering Conference, 2000, pp. 437–44.

  10. 10. E. Lugscheider, and K. Partz: Weld J, 1983, vol. 62, pp. 160.

    Google Scholar 

  11. 11. F. Wang, Q. Wang, B. Yu, B. Xiao, and Z. Ma: J Mater Process Tech, 2011, vol. 211, pp. 1804-9.

    Article  Google Scholar 

  12. 12. C. Ou, and R. Shiue: J Mater Sci, 2003, vol. 38, pp. 2337-46.

    Article  Google Scholar 

  13. 13. W.-C. Jiang, J.-M. Gong, H. Chen, and S. Tu: J Press Vess-T ASME, 2008, vol. 130, pp. 041203.

    Article  Google Scholar 

  14. 14. W.-C. Jiang, G. Jian-ming, and T. Shan-dong: Mater Design, 2010, vol. 32, pp. 763-42.

    Google Scholar 

  15. 15. J. Lemus-Ruíz, J. Verduzco, J. González-Sánchez, and V. López: J Mater Process Tech, 2015, vol. 223, pp. 16-21.

    Article  Google Scholar 

  16. 16. N. Philips, C. Levi, and A. Evans: Metall Mater Trans A, 2008, vol. 39, pp. 142-9.

    Article  Google Scholar 

  17. 17. H. Chen, J.-M. Gong, and S.-T. Tu: Sci Technol Weld Joi, 2009, vol. 14, pp. 32-41.

    Article  Google Scholar 

  18. 18. E. Leone, A. Rabinkin, and B. Sarna: Weld World, 2006, vol. 50, pp. 3-15.

    Article  Google Scholar 

  19. 19. X. Yuan, M.B. Kim, Y.H. Cho, and C.Y. Kang: Metall Mater Trans A, 2012, vol. 43, pp. 1989-2001.

    Article  Google Scholar 

  20. 20. R.K. Roy, H. Bapari, A. Panda, and A. Mitra: Technol Weld Joi, 2013, vol. 18, pp. 216-21.

    Article  Google Scholar 

  21. 21. G. Chakraborty, P. Chaurasia, S. Murugesan, S. Albert, and S. Murugan: J Mater Process Tech, 2017, vol. 33, pp. 1372-8.

    Google Scholar 

  22. W. Zhu, H. Jiang, H. Zhang, S. Sun, and Y. Liu: Mater. Sci. Technol., 2017, pp. 1–8.

  23. 23. Y. Chen, H. Cui, B. Lu, and F. Lu: Materials, 2017, vol. 10, pp. 385.

    Article  Google Scholar 

  24. 24. W. Jiang, J. Gong, and S.-T. Tu: Mater Des, 2010, vol. 31, pp. 2157-62.

    Article  Google Scholar 

  25. 25. N. Wu, Y. Li, and Q. Ma: Mater Des, 2014, vol. 53, pp. 816-21.

    Article  Google Scholar 

  26. 26. W. Jiang, J. Gong, H. Chen, and S.-T. Tu: Int J Pres Ves Pip, 2008, vol. 85, pp. 569-74.

    Article  Google Scholar 

  27. 27. X. Yuan, C.Y. Kang, and M.B. Kim: Mater Charact, 2009, vol. 60, pp. 923-31.

    Article  Google Scholar 

  28. 28. D.Y. Park, S.K. Lee, J.K. Kim, S.N. Lee, S.J. Park, and Y.J. Oh: Mater Charact, 2017, vol. 130, pp. 278-84.

    Article  Google Scholar 

  29. 29. G. Taguchi: Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, Tokyo, 1986.

    Google Scholar 

  30. 30. C. Ji, N. Loh, K. Khor, and S. Tor: Mat Sci Eng a-Struct, 2001, vol. 311, pp. 74-82.

    Article  Google Scholar 

Download references

Acknowledgment

This work was conducted under the framework of the Research and Development Program of the Korea Institute of Energy Research (KIER) (B8-2413-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Yong Park.

Additional information

Manuscript submitted September 19, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, D.Y., Lee, S.K. & Oh, Y.J. Taguchi Analysis of Relation Between Tensile Strength and Interfacial Phases Quantified via Image Processing. Metall Mater Trans A 49, 4684–4699 (2018). https://doi.org/10.1007/s11661-018-4811-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4811-0

Navigation