Skip to main content
Log in

Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanotwinned (NT) regions can compensate the lower ductility of nanograined (NG) matrix so that NG metals with NT regions can achieve high strength and modest ductility. Main factors affecting the strength and ductility of the NG metals with NT regions have not been systematically and numerically investigated. Based on the strain gradient plasticity and Johnson–Cook failure criterion, computer simulations are carried out to clarify the effects of twin spacing together with shape and distribution of NT regions on their strength and ductility. Our calculations indicate that these attributes have significant effects on the overall ductility. In particular, it is discovered that a critical twin spacing marks the reversal of the overall ductility, that is, the overall ductility decreases and then increases with the continuous increase of twin spacing. Compared with the circular NT regions, the square and oblique square ones are found to provide higher overall strength and ductility. For the circular and oblique square NT regions, array arrangement tends to perform better in strengthening and toughening, while for the square NT regions, staggered arrangement is advisable. We have also uncovered three distinct failure modes, including fracture of matrix, fracture of NT regions, and interface debonding. Furthermore, fracture of NT regions can enhance the overall ductility and lead to the reversal of the overall ductility. It is believed that this study has provided significant insights into the roles of twin spacing together with shape and distribution of NT regions on the overall strength and ductility of this novel class of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.

    Article  Google Scholar 

  2. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.

    Article  Google Scholar 

  3. Y.T. Zhu and X. Liao: Nat. Mater., 2004, vol. 3, pp. 351–52.

    Article  Google Scholar 

  4. N.R. Tao and K. Lu: J. Mater. Sci. Technol., 2007, vol. 23, pp. 771–74.

    Article  Google Scholar 

  5. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.

    Article  Google Scholar 

  6. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Scripta Mater., 2005, vol. 52, pp. 989–94.

    Article  Google Scholar 

  7. L. Lu: J. Mater. Sci. Technol., 2008, vol. 24, pp. 473–82.

    Article  Google Scholar 

  8. K. Lu, L. Lu, and S. Suresh: Science, 2009, vol. 324, pp. 349–52.

    Article  Google Scholar 

  9. IA OvidKo and AG Sheinerman (2016) Rev. Adv. Mater. Sci. 44: 1–25.

    Google Scholar 

  10. D. Zhu, H. Zhang, and D.Y. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4207–17.

    Article  Google Scholar 

  11. L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Mat. Sci. Eng. A–Struct., 2014, vol. 606, pp. 334–45.

    Article  Google Scholar 

  12. H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46, pp.4078–85.

    Article  Google Scholar 

  13. A.Y. Chen, J.B. Liu, H.T. Wang, J. Lu, and Y.M. Wang: Mat. Sci. Eng. A–Struct., 2016, vol. 667, pp. 179–88.

    Article  Google Scholar 

  14. H.X. Jin and J.Q. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4647–57.

    Article  Google Scholar 

  15. Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 230–41.

    Article  Google Scholar 

  16. G.H. Xiao, N.R. Tao, and K. Lu: Mat. Sci. Eng. A–Struct., 2009, vol. 513, pp. 13–21.

    Article  Google Scholar 

  17. B.Y.C. Wu, P.J. Ferreira, and C.A. Schuh: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1927–36.

    Article  Google Scholar 

  18. Z.S. You, L. Lu, and K. Lu: Acta Mater., 2011, vol. 59, pp. 6927–37.

    Article  Google Scholar 

  19. L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607–10.

    Article  Google Scholar 

  20. D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: MRS Bull., 2016, vol. 41, pp. 286–91.

    Article  Google Scholar 

  21. X.H. Chen and L. Lu: Scripta Mater., 2007, vol. 57, pp. 133–36.

    Article  Google Scholar 

  22. X. Zhang, H. Wang, X.H. Chen, R.G. Hoagland, A. Misra: Appl. Phys. Lett., 2006, vol. 88, p. 173116.

    Article  Google Scholar 

  23. Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2949–53.

    Article  Google Scholar 

  24. C. Ye, S. Suslov, D. Lin, Y.L. Liao, and G.J. Cheng: J. Appl. Phys., 2014, vol. 115, p. 213519.

    Article  Google Scholar 

  25. Y.B. Wang and M.L. Sui: Appl. Phys. Lett., 2009, vol. 94, p. 021909.

    Article  Google Scholar 

  26. R.J. Asaro and S. Suresh: Acta Mater., 2005, vol. 53, pp. 3369–82.

    Article  Google Scholar 

  27. A. Jerusalem, M. Dao, S. Suresh, and R. Radovitzky: Acta Mater., 2008, vol. 56, pp. 4647–57.

    Article  Google Scholar 

  28. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.

    Article  Google Scholar 

  29. Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter: Scripta Mater., 2006, vol. 54, pp. 1163–68.

    Article  Google Scholar 

  30. Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126–35.

    Article  Google Scholar 

  31. A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Acta Mater., 2011, vol. 59, pp. 2437–46.

    Article  Google Scholar 

  32. L. Lu, Z.S. You, and K. Lu: Scripta Mater., 2012, vol. 66, pp. 837–42.

    Article  Google Scholar 

  33. E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Acta Mater., 2009, vol. 57, pp. 6215–25.

    Article  Google Scholar 

  34. M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.

    Article  Google Scholar 

  35. L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu: Acta Mater., 2011, vol. 59, pp. 5544–57.

    Article  Google Scholar 

  36. F.P. Yuan, L. Chen, P. Jiang, and X.L. Wu: J. Appl. Phys., 2014, vol. 115, p. 063509.

    Article  Google Scholar 

  37. F.P. Yuan and X.L. Wu: J. Mater. Sci., 2015, vol. 50, pp. 7557–67.

    Article  Google Scholar 

  38. X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877–80.

    Article  Google Scholar 

  39. X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, and H.J. Gao: MRS Bull., 2016, vol. 41, pp. 298–304.

    Article  Google Scholar 

  40. H.F. Zhou, S.X. Qu, and W. Yang: Model. Simul. Mater. Sc., 2010, vol. 18, p. 065002.

    Article  Google Scholar 

  41. Z. Zeng, X.Y. Li, L. Lu, and T. Zhu: Acta Mater., 2015, vol. 98, pp. 313–17.

    Article  Google Scholar 

  42. S.W. Kim, X.Y. Li, H.J. Gao, and S. Kumar: Acta Mater., 2012, vol. 60, pp. 2959–72.

    Article  Google Scholar 

  43. J.J. Li, Y. Ni, A.K. Soh, and X.L. Wu: Mater. Res. Lett., 2015, vol. 3, pp. 190–96.

    Article  Google Scholar 

  44. J.L. Ning and D. Wang: J. Alloy. Compd., 2012, vol. 514, pp. 214–19.

    Article  Google Scholar 

  45. H.T. Wang, N.R. Tao, and K. Lu: Acta Mater., 2012, vol. 60, pp. 4027–40.

    Article  Google Scholar 

  46. X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Model. Simul. Mater. Sc., 2014, vol. 22, p. 075014.

    Article  Google Scholar 

  47. Y. Zhang, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 2429–40.

    Article  Google Scholar 

  48. Dassault Providence RI: ABAQUS Example Problems Manual, Theory Manual, and User’s Manual, version 6.10, 2013.

  49. L.L. Zhu and J. Lu: Int. J. Plasticity, 2012, vol. 30–31, pp. 166–84.

    Article  Google Scholar 

  50. Y. Huang, S. Qu, K.C. Hwang, M. Li, and H.J. Gao: Int. J. Plasticity, 2004, vol. 20, pp. 753–82.

    Article  Google Scholar 

  51. G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of the 7th Int. Symposium on Ballistics, 1983, The Hague, The Netherlands.

  52. G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.

    Article  Google Scholar 

  53. X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Mat. Sci. Eng. A, 2014, vol. 618, pp. 479–89.

    Article  Google Scholar 

  54. Q.D. Ouyang, X. Guo, X.Q. Feng: Mat. Sci. Eng. A–Struct., 2016, vol. 677, pp. 76–88.

    Article  Google Scholar 

  55. G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, p. V014T11A004.

  56. G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: Int. J. Comput. Meth. Eng. Sci. Mech., 2018, vol. 19, pp. 1–10.

    Article  Google Scholar 

  57. X. Guo, Q.D. Ouyang, G.J. Weng, and L.L. Zhu: Mat. Sci. Eng. A-Struct., 2016, vol. 657, pp. 234–43.

    Article  Google Scholar 

  58. R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mat. Sci. Eng. A–Struct., 2007, vol. 463, pp. 14–21.

    Article  Google Scholar 

  59. Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank two anonymous reviewers for their helpful comments. This research is supported by the National Natural Science Foundation of China (Project no. 11372214) and the opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) (Project no. KFJJ17-10M). Weng thanks the support of NSF Mechanics of Materials Program under CMMI-1162431. Zhu acknowledges the support from the National Natural Science Foundation of China (Project no. 11472243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Guo.

Additional information

Manuscript submitted February 7, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Liu, Y., Weng, G.J. et al. Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions. Metall Mater Trans A 49, 5001–5014 (2018). https://doi.org/10.1007/s11661-018-4773-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4773-2

Navigation