Skip to main content
Log in

Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of varying fractions of primary gamma prime precipitates on the hot deformation and annealing behavior of an experimental Nickel-based superalloy containing 24 wt pct. Co was investigated. Billets heat treated at 1110 °C or 1135 °C were subjected to hot compression tests at temperatures ranging from 1020 °C to 1060 °C and strain rates ranging from 0.001 to 0.1/s. The microstructures were characterized using electron back scatter diffraction in the as-deformed condition as well as following a super-solvus anneal heat treatment at 1140 °C for 1 hour. This investigation sought to quantify and understand what effect the volume fraction of primary gamma prime precipitates has on the dynamic recrystallization behavior and resulting length fraction ∑3 twin boundaries in the low stacking fault superalloy following annealing. Although deformation at the lower temperatures and higher strain rates led to dynamic recrystallization for both starting microstructures, comparatively lower recrystallized fractions were observed in the 1135 °C billet microstructures deformed at strain rates of 0.1/s and 0.05/s. Subsequent annealing of the 1135 °C billet microstructures led to a higher proportion of annealing twins when compared to the annealed 1110 °C billet microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L Tan, K Sridharan, TR Allen, RK Nanstad, DA McClintock (2008) J. Nucl. Mater. 374: 270–280.

    Article  Google Scholar 

  2. EM Lehockey, G Palumbo (1997) Mater. Sci. Eng. A. 237:168–172.

    Article  Google Scholar 

  3. Y Gao, RO Ritchie, M Kumar, RK Nalla (2005) Metall. Mater. Trans. A, 36A:3325–3333.

    Article  Google Scholar 

  4. S Kobayashi, T Inomata, H Kobayashi, S Tsurekawa, T Watanabe (2008) J. Mater. Sci. 43:3792–3799.

    Article  Google Scholar 

  5. T.M. Pollock, S. Tin: J. Propul. Power, 2006, Vol. 22, pp. 361-374.

    Article  Google Scholar 

  6. D. Blavette, A. Bostel, M. Bouet: J. Phys. Colloq.,1994, Vol. 45, pp.379-384.

    Google Scholar 

  7. J. McCarley, R.L. Goetz, R.C. Helmink, S.Tin: Metall. Mater. Trans A, 2017, Vol.48A, pp. 1666-1677.

    Article  Google Scholar 

  8. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, X. Yang: Mater. Des., 2015, Vol. 80, pp. 51-62.

    Article  Google Scholar 

  9. X.Z. Lv, J.X Zhang, H. Harada: Int. J. Fatigue, 2014, Vol. 66, pp. 246-251.

    Article  Google Scholar 

  10. M. Sangid, T. Ezaz, H. Sehitoglu, I. Robertson: Acta. Mater., 2011, Vol.59, pp.283-296.

    Article  Google Scholar 

  11. Y Yong, Y Gu, C Cui, T Osada, Z Zhong, T Tetsui, T Yokokawa, H Harada (2011) J. Mater. Res. 22:2833-2837.

    Google Scholar 

  12. Y. Jin, M. Bernacki, G.S. Rohrer, A.D. Rollett, B. Lin, N. Bozzolo: 5th International Conference on Recrystallization and Grain Growth, ReX and GG., 2013, pp. 113–16.

  13. J.R. Cahoon, Q. Li, N.L. Richards: Mater. Sci. Eng. A, 2009, 526, pp.56-61.

    Article  Google Scholar 

  14. N. Souai, N.Bozzolo, L. Naze, Y. Chastel, R. Loge: Scr. Mater., 2010, 62, pp. 851-854.

    Article  Google Scholar 

  15. Q. Bai, Q. Zhao, S. Xia, B. Wang, B. Zhou, C. Su: Mater. Charac., 2017, 123, pp. 178-188.

    Article  Google Scholar 

  16. W. Wang, A.L. Helbert, F. Brisset, M.H. Mathon, T. Baudin: Acta. Mater., 2014, 81, pp. 457-468.

    Article  Google Scholar 

  17. X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, Q. Liu: Mater. Sci. Eng. A, 2015, 622, pp. 108-113.

    Article  Google Scholar 

  18. W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, T. Baudin: Mater. Sci. Eng. A, 2014, 589, pp.112-118.

    Article  Google Scholar 

  19. V. Randle: Acta. Mater., 1999, Vol. 47, pp. 4187-4196.

    Article  Google Scholar 

  20. J. Y. Song, S. Sato, Y. Koizumi, and A. Chiba: Adv. Mater. Res., 2014, Vol. 922, pp. 711-715.

    Article  Google Scholar 

  21. C. Tian, G. Han, C. Cui, X. Sun: Mater. Des., 2014, Vol. 64, pp. 316–323.

    Article  Google Scholar 

  22. B.D. Fu, K. Du, G.M. Han, C.Y. Cui, J.X. Zhang: Mater. Lett., 2015, Vol. 152, pp. 272–75.

    Article  Google Scholar 

  23. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, X.M. Zhang: Mater. Sci. Eng. A, 2008, Vol. 497, pp. 479–486.

    Article  Google Scholar 

  24. P. Boelt, C. Sommitsch, S. Mitsche, M. Walter: Mater. Sci. Eng. A, 2006, Vol 420, pp. 306-314.

    Article  Google Scholar 

  25. H. Loyer Danflou, M. Marty, and A. Walder: Superalloys, 1992, pp. 63–72.

  26. E.M. Francis, B.M.B. Grant, J. Quinta da Fonseca, P.J. Phillips, M.J. Mills, M.R. Daymond, M. Preuss: Acta. Mater., 2014, Vol. 74, pp. 18–29.

    Article  Google Scholar 

  27. D Tytko, P Choi, J Klöwer, A Kostka, G Inden, D Raabe (2012) Acta. Mater 60:1731–1740.

    Article  Google Scholar 

  28. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, C.R. Hutchinson: Acta. Mater., 2009, Vol 57, pp. 5218–5228.

    Article  Google Scholar 

  29. M.Attallah,H.Terasaki,R.J.Moat: Mater. Charact., 2011, Vol. 62, pp. 760-767.

    Article  Google Scholar 

  30. M. Detrois, J. McCarley, S. Antonov, R.L. Goetz, R.C. Helmink, S. Tin: Mater. High Temp., 2016, Vol.33, pp. 310-317.

    Article  Google Scholar 

  31. D. Snyder, E.Y. Chen, C. Chen, and S. Tin: Metall. Mater. Trans. A, 2013, Vol. 44A, pp. 479-493.

    Article  Google Scholar 

  32. D. Li, Q. Guo, S. Guo, H. Peng, Z. Wu: Mater. Des., 2011, Vol. 32, pp. 696–705.

    Article  Google Scholar 

  33. M. Detrois, J. Rotella, R. L. Goetz, R.C. Helmink, S.Tin: Mater. Sci. Eng. A, 2015, Vol. 627A, pp. 95–105.

    Article  Google Scholar 

  34. N Bozzolo, N Souai, RE Loge (2012) Acta. Mater. 60: 5056-5066.

    Article  Google Scholar 

  35. H Jazaeri, FJ Humphreys (2004) Acta Mater 52:3251-3262.

    Article  Google Scholar 

  36. H Jazaeri, FJ Humphreys (2004) Acta Mater. 52:3239-3250.

    Article  Google Scholar 

  37. Y.C. Lin, X.Yang Wu, X. Chen, J. Chen, D. Wen, J. Zhang, L. Li: J Alloys Compd., 2015, Vol. 640, pp. 101-113.

    Article  Google Scholar 

  38. K. Kashihara, F. Inoko; Acta Mater.,2001, Vol. 49, pp. 3051-3061.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge provision of material from Rolls-Royce Corporation. Financial support for this work was provided by NSF CMMI-1334998 and NSF CMMI-1537468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua McCarley.

Additional information

Manuscript submitted July 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarley, J., Alabbad, B. & Tin, S. Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy. Metall Mater Trans A 49, 1615–1630 (2018). https://doi.org/10.1007/s11661-018-4539-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4539-x

Navigation