Skip to main content
Log in

Grain Boundary Engineering of a Low Stacking Fault Energy Ni-based Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of thermo-mechanical processing parameters on the resulting microstructure of an experimental Nickel-based superalloy containing 24 wt pct Co were investigated. Hot compression tests were performed at temperatures ranging from 1293 K to 1373 K (1020 to 1100 °C) and strain rates ranging from 0.0005 to 0.1/s. The mechanically deformed samples were also subject to annealing treatments at sub-solvus 1388 K (1115 °C) and super-solvus 1413 K (1140 °C) temperatures. This investigation sought to quantify and subsequently understand the behavior and evolution of both the grain boundary structure and length fraction of Σ3 twin boundaries in the low stacking fault energy superalloy. Over the range of deformation parameters investigated, the corresponding deformation mechanism map revealed that dynamic recrystallization or dynamic recovery was dominant. These conditions largely promoted post-deformation grain refinement and the formation of annealing twins following annealing. Samples deformed at strain rates of 0.0005 and 0.001/s at 1333 K and 1373 K (1060 °C and 1100 °C) exhibited extensive grain boundary sliding/rotation associated with superplastic flow. Upon annealing, deformation conditions that resulted predominately in superplastic flow were found to provide negligible enhancement of twin boundaries and produced little to no post-deformation grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, and D.A. McClintock: J. Nucl. Mater., 2008, vol. 374, pp. 270–80.

    Article  Google Scholar 

  2. E.M. Lehockey and G. Palumbo: Mater. Sci. Eng. A, 1997, vol. 237, pp. 168–72.

    Article  Google Scholar 

  3. Y. Gao, R.O. Ritchie, M. Kumar, and R.K. Nalla: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3325–33.

    Article  Google Scholar 

  4. S. Kobayashi, T. Inomata, H. Kobayashi, S. Tsurekawa, and T. Watanabe: J. Mater. Sci., 2008, vol. 43, pp. 3792–99.

    Article  Google Scholar 

  5. T.M. Pollock and S. Tin: J. Propul. Power, vol. 22, 2006, pp. 361–74.

    Article  Google Scholar 

  6. C.A. Schuh, R.W. Minich, and M. Kumar: Philos. Mag., 2003, vol. 83, pp. 711–26.

    Article  Google Scholar 

  7. S. Tsurekawa, S. Nakamichi, and T. Watanabe, Acta Mater., 2006, vol. 54, pp. 3617–26.

    Article  Google Scholar 

  8. M. Frary and C.A. Schuh: Philos. Mag., 2005, vol. 85, pp. 1123–43.

    Article  Google Scholar 

  9. S. Yeratapally, M. Glavicic, M. Hardy, and M. Sangid: Acta Mater., 2016, vol. 107, pp. 152–67.

    Article  Google Scholar 

  10. M.D. Sangid, H. Maier, and H. Sehitoglu: Acta Mater., 2011, vol. 59, pp. 328–41.

    Article  Google Scholar 

  11. M.D. Sangid, H. Maier, and H. Sehitoglu: Int. J. Plast., 2011, vol. 27, pp. 801–21.

    Article  Google Scholar 

  12. C.A. Schuh, M. Kumar, and W.E. King: Acta Mater., 2003, vol. 51, pp. 687–700.

    Article  Google Scholar 

  13. V. Randle: The Role of the Coincidence Site Lattice in Grain Boundary Engineering, The Institute of Materials, London, 1996.

    Google Scholar 

  14. M. Kumar, W.E. King, and A.J. Schwartz: Acta Mater., 2000, vol. 48, pp. 2081–91.

    Article  Google Scholar 

  15. S.L. Lee and N.L. Richards: Mater. Sci. Eng. A, 2005, vol. 390, pp. 81–87.

    Article  Google Scholar 

  16. G. Palumbo, and K.T. Aust: in Materials Interfaces: Atomic-level Structure and Properties, D. Wolf and S. Yip, eds., Chapman & Hall, London, 1992 (ch. 5).

  17. S. Patala, J.K. Mason, and C.A. Schuh, Prog. Mater. Sci., 2012, vol. 57, pp. 1383–425.

    Article  Google Scholar 

  18. M.D. Sangid, H. Sehitoglu, H.J. Maier, and T. Niendorf: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7115–25.

    Article  Google Scholar 

  19. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., UK Pergamon, Oxford, 1995.

    Google Scholar 

  20. Y. Yong, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, T. Yokokawa, and H. Harada: J. Mater. Res., 2011, vol. 22, pp. 2833–37.

    Article  Google Scholar 

  21. J.Y. Song, S. Sato, Y. Koizumi, and A. Chiba: Adv. Mater. Res., 2014, vol. 922, pp. 711–15.

    Article  Google Scholar 

  22. C. Tian, G. Han, C. Cui, and X. Sun: Mater. Des., 2014, vol. 64, pp. 316–23.

    Article  Google Scholar 

  23. B.D. Fu, K. Du, G.M. Han, C.Y. Cui, and J.X. Zhang: Mater. Lett., 2015, vol. 152, pp. 272–75.

    Article  Google Scholar 

  24. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479–86.

    Article  Google Scholar 

  25. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson: Acta Mater., 2009, vol. 57, pp. 5218–28.

    Article  Google Scholar 

  26. D. Snyder, E. Y. Chen, C. C. Chen, and S. Tin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 479–93.

    Article  Google Scholar 

  27. D. Li, Q. Guo, S. Guo, H. Peng, and Z. Wu: Mater. Des., 2011, vol. 32, pp. 696–705.

    Article  Google Scholar 

  28. Q. Guo, D. Li, S. Guo, H. Peng, and J. Hu: J. Nucl. Mater., 2011, vol. 414, pp. 440–50.

    Article  Google Scholar 

  29. W.J. Tu and T.M. Pollock: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2002–09.

    Article  Google Scholar 

  30. S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Grabb: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2778–98.

    Article  Google Scholar 

  31. B. Li and S. Tin: Mater. Sci. Eng. A, 2014, vol. 603, pp. 104–13.

    Article  Google Scholar 

  32. M. Detrois, J. Rotella, R.L. Goetz, R.C. Helmink, and S. Tin: Mater. Sci. Eng. A, 2015, vol. 627, pp. 95–105.

    Article  Google Scholar 

  33. M. Detrois, J. McCarley, S. Antonov, R.L. Goetz, R.C. Helmink, and S. Tin: Mater. High Temp., 2016, vol. 33, pp. 310–17.

    Article  Google Scholar 

  34. M. Detrois, R.L. Goetz, R.C. Helmink, and S. Tin: Mater. Sci. Eng. A, 2015, vol. 647, pp. 157–62.

    Article  Google Scholar 

  35. D.M. Collins, B.D. Conduit, H.J. Stone, M.C. Hardy, G.J. Conduit, and R.J. Mitchell: Acta Mater., 2013, vol. 61, pp. 3378–91.

    Article  Google Scholar 

  36. Y. Yuan, Y.F. Gu, T. Osada, Z.H. Zhong, T. Yokokawa, and H. Harada: Scripta Mater., 2012, vol. 66, pp. 884–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua McCarley.

Additional information

Manuscript submitted August 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarley, J., Helmink, R., Goetz, R. et al. Grain Boundary Engineering of a Low Stacking Fault Energy Ni-based Superalloy. Metall Mater Trans A 48, 1666–1677 (2017). https://doi.org/10.1007/s11661-017-3977-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3977-1

Keywords

Navigation