Skip to main content
Log in

High-Temperature Static Coarsening of Gamma-Prime Precipitates in NiAlCr-X Single Crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The high-temperature coarsening behavior of γ′ precipitates in a series of NiAlCr, NiAlCrTi, NiAlCrW, and NiAlCrTa single-crystal alloys was determined at temperatures between 1158 K and 1473 K (885 °C and 1200 °C). For this purpose, samples were supersolvus solution treated, water quenched, and then subsolvus aged for times between 0.067 and 96 hours. All of the measurements revealed an r3 dependence of the average precipitate radius on time, thus suggesting bulk-diffusion control of the coarsening process. Coarsening kinetics were fastest for NiCrAl and slowest for NiCrAlTa. The observations were interpreted in terms of the classical Lifshitz–Slyosov–Wagner (LSW) theory modified to account for the finite volume fraction of particles, the composition of the precipitates, and the multicomponent nature of the alloys. By this means, an effective diffusivity for the coarsening process was determined and found to lie between 0.6 and 1.5 times that for the impurity diffusivity of chromium in nickel. Furthermore, the modified LSW theory in conjunction with experimental measurements suggested that the effective diffusivity controlling γ′ coarsening at high temperatures in multi-component nickel-base superalloys lay in the lower portion of this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. J. Donachie (ed.): Superalloys: Source Book, ASM International, Materials Park, OH, 1984.

  2. M. Soucail and Y. Bienvenu: Mater. Sci. Eng. A, 1996, vol. A220, pp. 215-222.

    Article  Google Scholar 

  3. J. Cormier, X. Milhet, and J. Mendez: J. Mater. Sci., 2007, vol. 42, pp. 7780-7786.

    Article  Google Scholar 

  4. R. Giraud, Z. Hervier, J. Cormier, G. Saint-Martin, F. Hamon, X. Milhet, and J. Mendez: Metall. Mater. Trans. A, 2013, vol. 44, pp. 131-146.

    Article  Google Scholar 

  5. F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier: J. Alloys Comp., 2016, vol. 658, pp. 981-995.

    Article  Google Scholar 

  6. M.J. Whelan: Metal Sci. Journal, 1969, vol. 3, pp. 95-97.

    Article  Google Scholar 

  7. H.B. Aaron and G.R. Kotler: Metall. Trans., 1971, vol. 2, pp. 393-408.

    Article  Google Scholar 

  8. H.B. Aaron and G.R. Kotler: Metal Sci. Journal, 1970, vol. 4, 222-225.

    Article  Google Scholar 

  9. G. Wang, D.S. Xu, N. Ma, N. Zhou, E.J. Payton, R. Yang, M.J. Mills, and Y. Wang: Acta Mater., 2009, vol. 57, pp. 316-325.

    Article  Google Scholar 

  10. R.D. Doherty: Msdkf fldf f, In: R.W. Cahn and P. Haasen, eds.,in Physical Metallurgy, North-Holland, Amsterdam, 1996

    Google Scholar 

  11. D. Turnbull (1958) Fmr hth htyht. In: F. Seitz and D. Turnbull, eds., Solid-State Physics, vol. 3. Academic Press, New York, pp. 226-306.

    Google Scholar 

  12. A. Kelly and R.B. Nicholson: Progress in Materials Sci., 1963, vol. 10, pp. 151-391.

    Article  Google Scholar 

  13. K.C. Russell: in Phase Transformations, ASM, Metals Park, OH, 1970, pp. 219-268.

    Google Scholar 

  14. J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd Edition, Pergamon Press, Oxford, UK, 1975.

    Google Scholar 

  15. K.C. Russell: Advances in Colloid and Interface Sci., 1980, vol. 13, pp. 205-318.

    Article  Google Scholar 

  16. P. Haasen, V. Gerold, R. Wagner, and M.F. Ashby: Decomposition of Alloys: The Early Stages, Pergamon Press, Oxford, UK, 1984.

    Google Scholar 

  17. H.I. Aaronson and F.K. LeGoues: Metall. Trans. A, 1992, vol. 23, pp. 1915-1945.

    Article  Google Scholar 

  18. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University press, London, 1959.

    Google Scholar 

  19. H.B. Aaron, D. Fainstein, and G.R. Kotler: J. Applied Phys., 1970, vol. 41, pp. 4404-4410.

    Article  Google Scholar 

  20. J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, UK, 1997.

    Book  Google Scholar 

  21. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-51.

    Article  Google Scholar 

  22. C. Wagner: Zeit. Elektrochem., 1961, vol. 65, pp. 581-591.

    Google Scholar 

  23. L. Ratke and P.W. Voorhees: Growth and Coarsening- Ostwld Ripening in Material Processing, Springer Verlag, Berlin, 2002.

    Google Scholar 

  24. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 61-71.

    Article  Google Scholar 

  25. A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27, pp. 489-497.

    Article  Google Scholar 

  26. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2001-2011.

    Article  Google Scholar 

  27. P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2013-2030.

    Article  Google Scholar 

  28. H. A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz: Acta Metall. et Mater., 1994, vol. 42, pp. 991-1000.

    Article  Google Scholar 

  29. A. Umantsev and G.B. Olson: Scripta Metall. et Mater., 1993, vol. 29, pp. 1135-1140.

    Article  Google Scholar 

  30. J.E. Morral and G.R. Purdy: Scripta Metall. et Mater., 1994, vol. 30, pp. 905-908.

    Article  Google Scholar 

  31. C.J. Kuehmann and P.W. Voorhees: Metall. and Mater. Trans A, 1996, vol. 27A, pp. 937-943.

    Article  Google Scholar 

  32. A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2379-2405.

    Article  Google Scholar 

  33. V. Biss and D.L. Sponseller: Metall. Trans., 1973, vol. 4, pp. 1953-1960.

    Article  Google Scholar 

  34. P.K. Footner and B.P. Richards: J. Mater. Sci., 1982, vol. 17, pp. 2141-2153.

    Article  Google Scholar 

  35. H. Li, L. Zuo, X. Song, Y. Wang, and G. Chen: Rare Metals, 2009, vol. 28(2), pp. 197-201.

    Article  Google Scholar 

  36. E.H. van der Molen, J.M. Oblak, and O.H. Kriege: Metall. Trans., 1971, vol. 2, pp. 1627-1633.

    Google Scholar 

  37. A.A. Hopgood and J.W. Martin: Mater. Sci. Tech., 1986, vol. 2, pp. 543-546.

    Article  Google Scholar 

  38. H.T. Kim, S.S. Chun, X.X. Yao, Y. Fang, and J. Choi: J. Mater. Sci., 1997, vol. 32, pp. 4917-4923.

    Article  Google Scholar 

  39. A. Ges, O. Fornaro, and H. Palacio: J. Mater. Sci., 1997, vol. 32, pp. 3687-3691.

    Article  Google Scholar 

  40. A. Ges, O. Fornaro, and H. Palacio: Mater. Sci.Eng., 2007, vol. A458, pp. 96-100.

    Article  Google Scholar 

  41. J. Lapin, M. Gebura, T. Pelachova, and M. Nazmy: Kovove Mater., 2008, vol. 46, pp. 313-322.

    Google Scholar 

  42. J.S. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk, and H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2538-2549.

    Article  Google Scholar 

  43. X. Li, N. Saunders, and A.P. Miodownik: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3367-3373.

    Article  Google Scholar 

  44. C. Ai, X. Zhao, J. Zhou, H. Zhang, L Liu, Y. Pei, S. Li, and S. Gong: J. Alloys and Compounds, 2015, vol. 632, pp. 558-562.

    Article  Google Scholar 

  45. M. Mrotzek and E. Nembach: Acta Mater., 2008, vol. 56, pp. 150-154.

    Article  Google Scholar 

  46. J. Coakley, H. Basoalto, and D. Dye: Acta Mater., 2010, vol. 58, pp. 4019-4028.

    Article  Google Scholar 

  47. R.V. Miner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1011-1020.

    Article  Google Scholar 

  48. J. Sosa, M. Huber, D.E. Welk, and H.L. Fraser: IMMI, 2014, vol. 3 (18).

  49. T.M. Smith, P. Bonacuse, J. Sosa, M. Kulis, and L. Evans: Mater. Characterization, 2018, vol. 140, pp. 86-94.

    Article  Google Scholar 

  50. A.R.C. Gerlt, R.S. Picard, A.E. Sauber, A.K. Criner, S.L. Semiatin, and E.J. Payton: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4424-4428.

    Article  Google Scholar 

  51. S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, and D.U. Furrer: IMMI, 2016, vol. 5 (3).

  52. C.K. Sudbrack, R.D. Noebe, D.N. Seidman: Acta Mater., 2007, vol. 55, pp.119–130.

    Article  Google Scholar 

  53. S.L. Semiatin, B.C. Kirby, and G.A. Salishchev: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2809-2819.

    Article  Google Scholar 

  54. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, Warrandale, PA, 2000, pp. 263–272.

  55. C.E. Campbell: J. Phase Equil Diffusion, 2004, vol. 25, pp. 6-15.

    Article  Google Scholar 

  56. R.A. MacKay and M.V. Nathal: Acta Metall. Mater., 1990, vol. 38, pp. 993-1005.

    Article  Google Scholar 

  57. D.A. Grose and G.S. Ansell: Metall. Trans. A, 1981, vol. 12A, pp. 1631-1645.

    Article  Google Scholar 

  58. T.P. Gabb, J. Gayda, D.F. Johnson, R.A. MacKay,, R.B. Rogers, C.K. Sudbrack, A. Garg, I.E. Locci, S.L. Semiatin, and E. Kang, “Comparison of γ - γ′ Phase Coarsening Response of Three Powder Metal Disk Superalloys,” Report NASA/TM-2016-218936, NASA Glenn Research Center, Cleveland, OH, February 2016.

    Google Scholar 

  59. A.J. Ardell and V. Ozolins: Nature Materials, 2005, vol. 4, pp. 309-316.

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate and the Advanced Metallic Materials Branch of the NASA Glenn Research Center. The yeoman assistance of T.M. Brown, R.E. Turner, and C.P. Lingane in conducting the experiments is gratefully acknowledged. Two of the authors (NCL, ARCG) were supported under the auspices of Contract FA8650-15-D-5230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Semiatin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semiatin, S.L., Levkulich, N.C., Gerlt, A.R.C. et al. High-Temperature Static Coarsening of Gamma-Prime Precipitates in NiAlCr-X Single Crystals. Metall Mater Trans A 50, 2289–2301 (2019). https://doi.org/10.1007/s11661-018-05104-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-05104-w

Navigation