Skip to main content
Log in

Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of the chemical composition, especially the niobium content, chromium equivalent Creq, and nickel equivalent Nieq, on the weld solidification cracking susceptibility in the austenite single-phase region in the Schaeffler diagram was investigated. Specimens were fabricated using the hot-wire laser welding process with widely different compositions of Creq, Nieq, and niobium in the region. The distributions of the susceptibility, such as the crack length and brittle temperature range (BTR), in the Schaeffler diagram revealed a region with high susceptibility to solidification cracking. Addition of niobium enhanced the susceptibility and changed the distribution of the susceptibility in the diagram. The BTR distribution was in good agreement with the distribution of the temperature range of solidification (ΔT) calculated by solidification simulation based on Scheil model. ΔT increased with increasing content of alloying elements such as niobium. The distribution of ΔT was dependent on the type of alloying element owing to the change of the partitioning behavior. Thus, the solidification cracking susceptibility in the austenite single-phase region depends on whether the alloy contains elements. The distribution of the susceptibility in the region is controlled by the change in ΔT and the segregation behavior of niobium with the chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Kou: Welding Metallurgy, John Wiley & Sons, New Jersey, 2003.

    Google Scholar 

  2. J.C. Lippold and D. J. Kotecki: Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons, New Jersey, 2005.

    Google Scholar 

  3. A. L. Schaeffler: Metal Progress, 1949, vol. 56, pp. 680 - 680B.

    Google Scholar 

  4. American Welding Society: Welding Handbook, 9th ed., vol. 4, Materials and Applications, Miami, 2011, pp. 413–22.

  5. K. Saida, H. Matsushita, K. Nishimoto, K. Kikuchi, J. Nakayama: Science Technology of Welding and Joining, 2013, vol. 18, pp. 616-623.

    Article  Google Scholar 

  6. Y. Arata, F. Matsuda, H. Nakagawa, and S. Katayama: Trans. JWRI, 1978, vol. 7 1978, pp. 169–72.

  7. V. P. Kujanpaa, S. A. David and C. L. White: Welding Journal, 1986, vol. 65, pp. 203s-212s.

    Google Scholar 

  8. V. P. Kujanpaa, N. Suutala, T. Takalo, T. Moisio: Welding Research International, 1979, vol. 9, pp. 55-76.

    Google Scholar 

  9. T. Ogawa: Welding International., 1991, vol. 5, pp. 931-935.

    Article  Google Scholar 

  10. T. Ogawa, E. Thsunetomi: Welding Journal, 1982, vol. 63, pp. 82s-93s.

    Google Scholar 

  11. R. Phaoniam, K. Shinozaki, M. Yamamoto, K. Kadoi, S. Tsuchiya, A. Nishijima: Welding in the World, 2013, vol. 57, pp. 607-613.

    Article  Google Scholar 

  12. K. Kadoi, K. Shinozaki, M. Yamamoto, K. Owaki, K. Inose and D. Takayanagi: Quarterly Journal of Japan Welding Society, 2011, vol. 29, pp. 62s-65s.

    Article  Google Scholar 

  13. D. Wang, S. Sakoda, K. Kadoi, K. Shinozaki and M. Yamamoto: Quarterly Journal of Japan Welding Society, 2015, vol. 33, pp. 39s-43s.

    Article  Google Scholar 

  14. F. Matsuda, H. Nakagawa, S. Ogata and S. Katayama: Transactions of JWRI, 1978, vol. 7, pp. 59- 70.

    Google Scholar 

  15. R. A. Patterson, J. O. Milewski: Welding Journal, 1985, vol. 64, pp. 227s-31s.

    Google Scholar 

  16. J. N. Dupont, C. V. Robino, A. R. Marder: Welding Journal, 1998, vol. 77, pp. 417s-31s.

    Google Scholar 

  17. J.N. DuPont, C.V. Robino, and A.R. Marder: Science and Technology of Welding and Joining, 1999, Vol. 4, pp. 1-14.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 15K18223 and a grant of Japan welding engineering society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kota Kadoi.

Additional information

Manuscript submitted April 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadoi, K., Shinozaki, K. Effect of Chemical Composition on Susceptibility to Weld Solidification Cracking in Austenitic Weld Metal. Metall Mater Trans A 48, 5860–5869 (2017). https://doi.org/10.1007/s11661-017-4340-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4340-2

Navigation