Skip to main content
Log in

Effects of Various Heat Inputs and Reheating Processes on the Microstructure and Properties of Low-Carbon Bainite Weld Metals Containing 4% Ni

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of welding heat inputs and reheating processes with various cooling rates were investigated by thermally simulated experiments on the microstructure, tensile strength and impact toughness of high-strength weld metals containing 4% Ni. The microstructure was characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). As a result, an extended continuous cooling transformation (e-CCT) diagram was established. The change in the microstructures is affected from three perspectives. The coarser grains and the generated martensite-austenite (M-A) constituents lead to the deterioration of impact toughness and ultimate tensile strength with the increase in heat inputs. The reheating processes with various cooling rates can change the microstructure, hardness, impact toughness and large angle boundaries. When the heat input increases from 15.8 to 17.9 kJ/cm, the content of block ferrite decreases from the initial 18.9 to 8.5%, and the content of lath bainite increases accordingly. When the heat input is 20.6 kJ/cm, the content of block ferrite increases is 17.3% and the rest is lath bainite. The hardness first decreases in the lower cooling rate range (0.05~1 °C/s) and then increases at higher cooling rates. The minimum hardness at a cooling rate of 1 °C/s may be related to the decrease in the coarse block M-A constituents. The reheating process decreases the impact toughness at room temperature from 83 to 37.45 J for the specimen with a cooling rate of 30 °C/s and increases the impact toughness from 83 to 99.71 J for the specimen with a cooling rate of 0.5 °C/s. The impact toughness at −50 °C after the reheating processes decreases from 74 to 32 J, and the lowest impact toughness after the reheating processes reaches only 32 J. The proportion of high-angle grain boundaries (HAGBs) first increases from 12.13 to 26. 44% and then decreases to 16.34% with increasing cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10(11), p 817–822.

    Article  CAS  Google Scholar 

  2. E. Surian, J. Trotti, A. Cassanelli and L. De Vedia, Influence of chromium on the mechanical properties and microstructure of weld metal from a high-strength SMA electrode, Weld. J., 1994, 73, p 45-s.

    Google Scholar 

  3. R. Pouriamanesh, K. Dehghani, R. Vallant and N. Enzinger, Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels, J. Mater. Eng. Perform., 2018, 27(11), p 6058–6068.

    Article  CAS  Google Scholar 

  4. K. Xu, T. Fang, L. Zhao, H. Cui and F. Lu, Effect of trace element on microstructure and fracture toughness of weld metal, Acta Metall. Sin. (Engl. Lett.), 2020, 33(3), p 425–436.

    Article  CAS  Google Scholar 

  5. Y. Kang, S. Jeong, J.-H. Kang and C. Lee, Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds, Metall. Mater. Trans. A, 2016, 47(6), p 2842–2854.

    Article  CAS  Google Scholar 

  6. J. Yang, C. Huang, C. Huang and J. Aoh, Influence of acicular ferrite and bainite microstructures on toughness for an ultra-low-carbon alloy steel weld metal, J. Mater. Sci. Lett., 1993, 12(16), p 1290–1293.

    Article  CAS  Google Scholar 

  7. T. Zhang, Z. Li, S. Ma, S. Kou and H. Jing, High strength steel (600–900 MPa) deposited metals: microstructure and mechanical properties, Sci. Technol. Weld. Join., 2016, 21(3), p 186–193.

    Article  CAS  Google Scholar 

  8. F. Liu, C. Tan, X. Gong, L. Wu, B. Chen, X. Song and J. Feng, A comparative study on microstructure and mechanical properties of HG785D steel joint produced by hybrid laser-MAG welding and laser welding, Opt. Laser Technol., 2020, 128, p 106247.

    Article  CAS  Google Scholar 

  9. E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 3–increased strength resulting from carbon additions, Sci. Technol. Weld. Join., 2006, 11(1), p 19–24.

    Article  CAS  Google Scholar 

  10. E.J. Barrick and J.N. DuPont, Microstructural characterization and toughness evaluation of 10 wt% Ni steel weld metal gas tungsten arc and gas metal arc weld fusion zones, Mater. Sci. Eng. A., 2020, 796, p 140043.

    Article  CAS  Google Scholar 

  11. S. Khodir, T. Shibayanagi, M. Takahashi, H. Abdel-Aleem and K. Ikeuchi, Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding, Mater. Des., 2014, 60, p 391–400.

    Article  CAS  Google Scholar 

  12. J. Hu, L.X. Du and J.J. Wang, Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb–Ti bainitic high strength steel, Mater. Sci. Eng. A., 2012, 554, p 79–85.

    Article  CAS  Google Scholar 

  13. J. Zhang, K. Cui, B. Huang, X. Mao and M. Zheng, Influence of heat input on the microstructure and mechanical properties of CLAM steel multilayer butt-welded joints, Fusion Eng. Des., 2020, 152, p 111413.

    Article  CAS  Google Scholar 

  14. D.C. Ramachandran, J. Moon, C.H. Lee, S.D. Kim, J.H. Chung, E. Biro and Y.D. Park, Role of bainitic microstructures with MA constituent on the toughness of an HSLA steel for seismic resistant structural applications, Mater. Sci. Eng. A., 2021, 801, p 140390.

    Article  CAS  Google Scholar 

  15. Ö. Üstündağ, S. Gook, A. Gumenyuk and M. Rethmeier, Hybrid laser arc welding of thick high-strength pipeline steels of grade X120 with adapted heat input, J. Mater. Process. Technol., 2020, 275, p 116358.

    Article  Google Scholar 

  16. X. Yang, X. Di, X. Liu, D. Wang and C. Li, Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels, Mater. Charact., 2019, 155, p 109818.

    Article  CAS  Google Scholar 

  17. Q. Chu, S. Xu, X. Tong, J. Li, M. Zhang, F. Yan, W. Zhang, Z. Bi and C. Yan, Comparative study of microstructure and mechanical properties of X80 SAW welds prepared using different wires and heat inputs, J. Mater. Eng. Perform., 2020, 29(7), p 4322–4338.

    Article  CAS  Google Scholar 

  18. R. Cao, J.J. Yuan, Z.K. Xiao, J.Y. Ma, G.J. Mao, X.K. Zhang and J.H. Chen, Sources of variability and lower values in toughness measurements of weld metals, J. Mater. Eng. Perform., 2017, 26, p 2472–2483.

    Article  CAS  Google Scholar 

  19. Y. Kang, G. Park, S. Jeong and C. Lee, Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel, Metall. Mater. Trans. A, 2018, 49(1), p 177–186.

    Article  CAS  Google Scholar 

  20. X. Wang, Y. Nan, Z. Xie, Y. Tsai, J. Yang and C. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Mater. Sci. Eng. A., 2017, 702, p 196–205.

    Article  CAS  Google Scholar 

  21. X. Wang, Y. Tsai, J. Yang, Z. Wang, X. Li, C. Shang and R. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multi-pass weld metal in a 550-MPa-grade offshore engineering steel, Weld. World., 2017, 61(6), p 1155–1168.

    Article  CAS  Google Scholar 

  22. P. Haslberger, S. Holly, W. Ernst and R. Schnitzer, Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 2018, 53(9), p 6968–6979.

    Article  CAS  Google Scholar 

  23. E. Keehan, L. Karlsson, H.-O. Andrén and H. Bhadeshia, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 2–impact toughness gain resulting from manganese reductions, Sci. Technol. Weld. Joining, 2006, 11(1), p 9–18.

    Article  CAS  Google Scholar 

  24. E. Keehan, L. Karlsson and H.-O. Andrén, Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: part 1–effect of nickel content, Sci. Technol. Weld. Joining, 2006, 11(1), p 1–8.

    Article  CAS  Google Scholar 

  25. X. Di, M. Tong, C. Li, C. Zhao and D. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A., 2019, 743, p 67–76.

    Article  CAS  Google Scholar 

  26. S. Kou, Welding Metallurgy, Wiley, New Jersey, 2003.

    Google Scholar 

  27. G.J. Mao, R. Cao, X.L. Guo, Y. Jiang and J.H. Chen, In-situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals, Metall. Mater. Trans. A, 2017, 48(12), p 5783–5799.

    Article  CAS  Google Scholar 

  28. S. Zajac, V. Schwinn and K.H. Tacke, Characterization and quantication of complex bainitic microstructures in high and ultra-high strength linepipe steels, Mater. Sci., 2005, 500–501, p 387–394.

    Google Scholar 

  29. L. Morsdorf, C.C. Tasan, D. Ponge et al., 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence, Acta Mater., 2015, 95, p 366–377.

    Article  CAS  Google Scholar 

  30. G.J. Mao, R. Cao, J. Yang, Y. Jiang, S. Wang, X.L. Guo and J.H. Chen, Effect of nickel contents on the microstructure and mechanical properties for low-carbon bainitic weld metals, J. Mater. Eng. Perform., 2017, 26(5), p 2057–2071.

    Article  CAS  Google Scholar 

  31. J.H. Chen and R. Cao, Micromechanism of cleavage fracture of metals: a comprehensive microphysical model for cleavage cracking in metals, Butterworth-Heinemann, United Kingdom, 2014.

    Google Scholar 

  32. R. Cao, X.B. Zhang, Z. Wang, Y. Peng, W.S. Du, Z.L. Tian and J.H. Chen, Investigation of microstructural features determining the toughness of 980 MPa bainitic weld metal, Metall. Mater. Trans. A., 2014, 45(2), p 815–834.

    Article  CAS  Google Scholar 

  33. K.F. Chung, H.C. Ho, Y.F. Hu, K. Wang and D.A. Nethercot, Experimental evidence on structural adequacy of high strength s690 steel welded joints with different heat input energy, Eng. Struct., 2020, 204, p 110151.

    Article  Google Scholar 

  34. Q.W. Wang, C.S. Li, J. Chen and X.Y. Tu, Effects of heat input on microstructure and mechanical properties of Fe–2Cr–Mo–0.12C steel, Mater. Sci. Technol., 2017, 34, p 1–9.

    Google Scholar 

  35. N. Huda, A.R. Midawi, J. Gianetto, R. Lazor and A.P. Gerlich, Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels, Mater. Sci. Eng. A., 2016, 662, p 481–491.

    Article  CAS  Google Scholar 

  36. L. Lan, C. Qiu, D. Zhao, X. Gao and L. Du, Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 2012, 558, p 592–601.

    Article  CAS  Google Scholar 

  37. A. Chabok, E. Van der Aa, J.T.M. De Hosson and Y. Pei, Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel, Mater. Des., 2017, 124, p 171–182.

    Article  CAS  Google Scholar 

  38. A. Lambert-Perlade, A.F. Gourgues and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta. Mater., 2004, 52, p 2337–2348.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Nature Science Foundation of China (Nos. 51761027, 51675255, 51961024, 52071170). The Lanzhou Science and Technology Department Project (2019-1-49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Ma, C., Li, W. et al. Effects of Various Heat Inputs and Reheating Processes on the Microstructure and Properties of Low-Carbon Bainite Weld Metals Containing 4% Ni. J. of Materi Eng and Perform 31, 10187–10204 (2022). https://doi.org/10.1007/s11665-022-07061-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07061-3

Keywords

Navigation