Skip to main content
Log in

Upward Continuous Casting in the Manufacture of Cu-Cr-Ag Alloys: Potential for Enhancing Strength Whilst Maintaining Ductility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Upward continuous casting was used to manufacture Cu-Cr-Ag high-strength high-conductivity alloys, for comparison with conventional processing methods. The behavior of the alloy samples was measured, including tensile strength, microhardness, and electrical conductivity. The microstructure was characterized using optical microscopy and transmission electron microscopy after each processing step. It was found that microstructure with columnar grains due to upward continuous casting made it possible to enhance strength whilst maintaining the ductility of the alloys during the aging process. The combined drawing-aging process has the potential to be used numerous times during the manufacture of Cu-Cr-based high-strength high-conductivity alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Reference

  1. R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion and R.Z. Valiev: Journal of Applied Physics, 2014, vol. 115, pp. 194301–04.

    Article  Google Scholar 

  2. B. Shen, J.Y. Cheng and H.Y. Li: Hot Working Technology, 2015, vol. 10, pp. 226–29.

    Google Scholar 

  3. R.K. Islamgaliev R K, K.M. Nesterov and R.Z. Valiev: The Physics of Metals and Metallography, 2015, vol. 116, pp. 209–18.

    Article  Google Scholar 

  4. S.G. Jia, X.M. Ning, P. Liu, M.S. Zheng and G.S. Zhou: Metals and Materials International, 2009, vol. 15, pp. 555–58.

    Article  Google Scholar 

  5. C. Watanabe, R. Monzen and K. Tazaki: Journal of Materials Science, 2008, vol. 43, pp. 813–19.

    Article  Google Scholar 

  6. S.C. Krishna, G.S. Rao, A.K. Jha, B. Pant and K.M. George: Journal of Materials Engineering and Performance, 2015, vol. 24, pp. 2341–45.

    Article  Google Scholar 

  7. J.P. Wu, W.X. Qi, Y.Z. Yang, F. Liu, J.T. Zhang, G.Y. Gan, N.Y. Wang, X.B. Zhang, M.S. Liu: Wear, 2017, vol 249, pp. 1021–27.

    Google Scholar 

  8. H. Turnow, H. Wendrock, S. Menzel, T. Gemming and J. Eckert: Thin Solid Films, 2015, vol. 598, pp. 184–88.

    Article  Google Scholar 

  9. F. Heringhaus, D. Raabe: Journal of Materials Processing Technology, 1996, vol 59, pp. 367–72.

    Article  Google Scholar 

  10. D. Raabe, D. Mattissen: Acta Materialia, 1998, vol 46, pp. 5973–84.

    Article  Google Scholar 

  11. S.I. Hong, J.S. Song: Metallurgical and Materials Transactions A, 2001, vol 32A, pp. 985–91.

    Article  Google Scholar 

  12. S.G. Jia, P. Liu, F.Z. Ren, B.H. Tian, M.S. Zheng and G.S. Zhou: Metals and Materials International, 2007, vol. 13, pp. 25–30.

    Article  Google Scholar 

  13. K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, J. Zou and Y.L. Yang: Rare metal materials and engineering, 2011, vol. 40, pp. 1931–35.

    Google Scholar 

  14. D. Raabe, K. Miyake, H. Takahara: Materials Science and Engineering A, 2000, vol 291, pp. 186–97.

    Article  Google Scholar 

  15. K. Liu, D. Lu, H. Zhou, Y. Yang, A. Atrens and J. Zou: Journal of Materials Engineering and Performance, 2013, vol. 22, pp. 3723–27.

    Article  Google Scholar 

  16. S. Wang, M. Xie, S. Wang, Y. Chen, J. Zhang and Y. Yang: Chinese Journal of rare metals, 2014, vol. 38, pp. 210–15.

    Google Scholar 

  17. D. Raabe, J. Ge: Scripta Materialia, 2004, vol 51, pp. 915–20.

    Article  Google Scholar 

  18. D. Mattissena, D. Raabea, F. Heringhausb: Acta Materialia, 1999, vol 47, pp. 1627–34.

    Article  Google Scholar 

  19. D. Raabe, S. Ohsaki, K. Hono: Acta Materialia, 2009, vol 57, pp. 5254–63.

    Article  Google Scholar 

  20. D. Raabe, P.P. Choi, Y.J. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury: MRS Bulletin, 2010, vol 35, pp. 982–91.

    Article  Google Scholar 

  21. J.B. Liu, L. Zhang, A.P. Dong, L.T. Wang, Y.W. Zeng and L. Meng: Materials Science and Engineering: A, 2012, vol. 15, pp. 331–38.

    Article  Google Scholar 

  22. I. Sağlam, D. Özyürek and K. Çetinkaya: Bulletin of Materials Science, 2011, vol. 34, pp. 1465–70.

    Article  Google Scholar 

  23. K. Wang, K.F. Liu, J.B. Zhang: Rare Metals, 2014, vol. 33, pp.134–38.

    Article  Google Scholar 

  24. N. Muramatsu, M. Akaiwa: Materials Transactions, 2016, vol 57, pp. 1794–1800.

    Article  Google Scholar 

  25. L.J. Peng, H.F. Xie, G.J. Huang, G.L. Xu, X.Q. Yin, X. Feng, X.J. Mi, Z. Yang: Journal of Alloys and Compounds, 2017, vol 708, pp. 1096–1102.

    Article  Google Scholar 

  26. H.M. Chen, D.W. Yuan, S.J. Wu, H. Wang, W.B. Xie, B. Yang: Scanning, 2017, DOI:10.1155/2017/4646581.

  27. J. Freudenberger, J. Lyubimova, A. Gaganov, H. Klauss, L. Schultz: Journal of Physics: Conference Series, 2010, vol 240, pp. 012112.

    Google Scholar 

  28. E. Botcharova, J. Freudenberger, L. Schultz: Acta Materialia, 2006, vol 54, pp. 3333–41.

    Article  Google Scholar 

  29. J. Lyubimova, J. Freudenberger, C. Mickel, T. Thersleff, A. Kauffmann, L. Schultz: Mater. Sci. Eng. A., 2010, vol. 527, pp. 606–13.

  30. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George: Metallography, Microstructure, and Analysis, 2014, vol 3, pp. 323–27.

    Article  Google Scholar 

  31. J.D. Embury: Materials Science and Engineering A, 1994, vol 175, pp. 105–111.

    Article  Google Scholar 

  32. U. Hangen, D. Raabe: Acta metallurgica et materialia, 1995, vol 43, pp. 4075–82.

    Article  Google Scholar 

  33. J.T. Wood, J.D. Embury, M.F. Ashby: Acta materialia, 1997, vol 45, pp. 1099–1104.

    Article  Google Scholar 

  34. W.D. Callister Jr.: Materials Science and Engineering: An Introduction, 7th ed., Wiley, New York, 2007.

Download references

Acknowledgments

This work is financially supported by The National Key Research and Development Program of China (Grant No. 2016YFB0301400). Thanks are also given to Mr. Mingmao Li, Dr. Xiangpeng Xiao, Dr. Weibin Xie, and Dr. Wenjing Wang for their help. We thank Dr. Sarah Dodds for her help during the course of language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang.

Additional information

Manuscript submitted February 23, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Yang, B., Chen, J. et al. Upward Continuous Casting in the Manufacture of Cu-Cr-Ag Alloys: Potential for Enhancing Strength Whilst Maintaining Ductility. Metall Mater Trans A 48, 6083–6090 (2017). https://doi.org/10.1007/s11661-017-4338-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4338-9

Navigation