Skip to main content
Log in

Deformation and Recrystallization Behavior of the Cast Structure in Large Size, High Strength Steel Ingots: Experimentation and Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Constitutive modeling of the ingot breakdown process of large size ingots of high strength steel was carried out through comprehensive thermomechanical processing using Gleeble 3800® thermomechanical simulator, finite element modeling (FEM), optical and electron back scatter diffraction (EBSD). For this purpose, hot compression tests in the range of 1473 K to 1323 K (1200 °C to 1050 °C) and strain rates of 0.25 to 2 s−1 were carried out. The stress-strain curves describing the deformation behavior of the dendritic microstructure of the cast ingot were analyzed in terms of the Arrhenius and Hansel-Spittel models which were implemented in Forge NxT 1.0® FEM software. The results indicated that the Arrhenius model was more reliable in predicting microstructure evolution of the as-cast structure during ingot breakdown, particularly the occurrence of dynamic recrystallization (DRX) process which was a vital parameter in estimating the optimum loads for forming of large size components. The accuracy and reliability of both models were compared in terms of correlation coefficient (R) and the average absolute relative error (ARRE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. SF2000 Data Sheet (2013), http://www.sorelforge.com. Accessed September 2013.

  2. H.J. McQueen and J.J. Jonas, in Treatise on Materials Science & Technology, ed. A. R.J, Elsevier, 1975, vol. Volume 6, pp. 393–493.

  3. E.I. Poliak and J.J. Jonas, ISIJ International, 2003, 43, 684-691.

    Article  Google Scholar 

  4. E.I. Poliak and J.J. Jonas, ISIJ International, 2003, 43, 692-700.

    Article  Google Scholar 

  5. A. Marchattiwar, A. Sarkar, J.K. Chakravartty and B.P. Kashyap, J. of Materi Eng and Perform, 2013, 22, 2168-2175.

    Google Scholar 

  6. Y. Han, G. Qiao, J. Sun and D. Zou, Computational Materials Science, 2013, 67, 93-103.

    Article  Google Scholar 

  7. Y.C. Lin and C. Xiao-Min, Materials & Design, 2011, 32, 1733-1759.

    Article  Google Scholar 

  8. Y.C. Lin and X.M. Chen, Computational Materials Science, 2010, 49, 628-633.

    Article  Google Scholar 

  9. D. Samantaray, S. Mandal and A.K. Bhaduri, Computational Materials Science, 2009, 47, 568-576.

    Article  Google Scholar 

  10. D.L. Preston, D.L. Tonks and D.C. Wallace, Journal of Applied Physics, 2003, 93, 211-220.

    Article  Google Scholar 

  11. M.C. Price, A.T. Kearsley and M.J. Burchell, International Journal of Impact Engineering, 2013, 52, 1-10.

    Article  Google Scholar 

  12. H.Y. Li, D.-D. Wei, Y.H. Li and X.F. Wang, Materials & Design, 2012, 35, 557-562.

    Article  Google Scholar 

  13. O. Sabokpa, A. Zarei-Hanzaki, H.R. Abedi and N. Haghdadi, Materials & Design, 2012, 39, 390-396.

    Article  Google Scholar 

  14. Y.F. Li, Z.H. Wang, L.Y. Zhang, C. Luo and X.C. Lai, Transactions of Nonferrous Metals Society of China, 2015, 25, 1889-1900.

    Article  Google Scholar 

  15. H.J. McQueen and N.D. Ryan, Materials Science and Engineering: A, 2002, 322, 43-63.

    Article  Google Scholar 

  16. M. El Mehtedi, F. Musharavati and S. Spigarelli, Materials & Design, 2014, 54, 869-873.

    Article  Google Scholar 

  17. A. Hensel and T. Spittel, Kraft-und Arbeitsbedarf bildsamer Formgeburgsverfahren. VEB DeutscherVerlag fur Grundstoffindustrie, Leipzig, 1978 (in German).

  18. Y.C. Lin, M.S. Chen and J. Zhong, Computational Materials Science, 2008, 42, 470-477.

    Article  Google Scholar 

  19. Y.C. Lin, M.S. Chen and J. Zhong, Mechanics Research Communications, 2008, 35, 142-150.

    Article  Google Scholar 

  20. Y.C. Lin and G. Liu, Computational Materials Science, 2010, 48, 54-58.

    Article  Google Scholar 

  21. W. Peng, W. Zeng, Q. Wang and H. Yu, Materials & Design, 2013, 51, 95-104.

    Article  Google Scholar 

  22. H. Yuan-Chun, Y.C. Lin, D. Jiao, L. Ge and C. Ming-Song, Materials & Design, 2014, 53, 349-356.

    Article  Google Scholar 

  23. S. Marie, R. Ducloux, P. Lasne, J. Barlier and L. Fourment, ESAFORM 2014, Espoo, Finland, 2014.

  24. P. Opla, I. Schindler, T. Petrek, P. Kawulok, F. Vanura, R. Kawulok and S. Rusz, METAL 2014, Brno, Czech republic, 2014.

  25. X. Duan and T. Sheppard, Journal of Materials Processing Technology, 2004, 150, 100-06.

    Article  Google Scholar 

  26. S.L. Semiatin, D.S. Weaver, R.C. Kramb, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey and M.M. Antony, Metallurgical and Materials Transactions A, 2004, 35A, 679-693.

    Article  Google Scholar 

  27. S.I. Oh, S.L. Semiatin and J.J. Jonas, MTA, 1992, 23, 963-975.

    Article  Google Scholar 

  28. G.E. Dieter, H.A. Kuhn and S.L. Semiatin, Handbook of Workability and Process Design, Asm International, 2003.

  29. G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang and J. Zhou, Materials Science and Engineering: A, 2011, 528, 4643-4651.

    Article  Google Scholar 

  30. M.-S. Chen, Y.C. Lin and X.-S. Ma, Materials Science and Engineering: A, 2012, 556, 260-266.

    Article  Google Scholar 

  31. X. Xiao, G.Q. Liu, B.F. Hu, X. Zheng, L.N. Wang, S.J. Chen and A. Ullah, Computational Materials Science, 2012, 62, 227-234.

    Article  Google Scholar 

  32. J.J. Jonas, C. Ghosh, X. Quelennec and V.V. Basabe, ISIJ International, 2013, 53, 145-151.

    Article  Google Scholar 

  33. E.I. Poliak and J.J. Jonas, Acta Materialia, 1996, 44, 127-136.

    Article  Google Scholar 

  34. K. Chadha, D. Shahriari and M. Jahazi, La Metallurgia Italiana - International Journal of the Italian Association for Metallurgy, 2016, 4, 5-12.

    Google Scholar 

  35. J. Rojek, O.C. Zienkiewicz, E. Oñate and E. Postek, Journal of Materials Processing Technology, 2001, 119, 41-47.

    Article  Google Scholar 

  36. P. Mahajan, L. Fourment and J.L. Chenot, Engineering Computations, 1998, 15, 908-924.

    Article  Google Scholar 

  37. R.L. Goetz and S.L. Semiatin, J. of Materi Eng and Perform, 2001, 10, 710-717.

    Article  Google Scholar 

  38. M.C. Mataya and V.E. Sackschewsky, Metallurgical and Materials Transactions A, 1994, 25, 2737-2752.

    Article  Google Scholar 

  39. K. Chadha, D. Shahriari and M. Jahazi, presented in part at the FiMPART, Hyderabad, India, 2015.

  40. L. Yunping, E. Onodera and A. Chiba, Materials Transactions, 2010, 51, 1210-1215.

    Article  Google Scholar 

  41. Y.C. Lin, M.S. Chen and J. Zhong, Journal of Central South University (Science and Technology), 2008, 39, 549-553.

    Google Scholar 

  42. Y.C. Lin, M.S. Chen and J. Zhong, Computational Materials Science, 2008, 44, 316-321.

    Article  Google Scholar 

  43. S.L. Semiatin, D.S. Weaver, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, R. C. Kramb and M.M. Antony, Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science), 2004, 35A, 679-693.

    Article  Google Scholar 

  44. S. Hotta, T. Murakami, T. Narushima, Y. Iguchi and C. Ouchi, ISIJ International, 2005, 45, 338-346.

    Article  Google Scholar 

  45. D. Samantaray, S. Mandal and A.K. Bhaduri, Materials & Design, 2011, 32, 2797-2802.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very much grateful to Finkl Steel for providing the specimens for the present research. The authors would also like to thank National Science Engineering Research Council (NSERC) Canada for their support in the framework of a Collaborative Research and Development project (CRD) and Transvalor Americas Corp for permission to use Forge NxT 1.0® software. One of the authors (Kanwal Chadha) would like to acknowledge the support of ÉTS, Canada for financial support for visiting Indian Institute of Technology, Hyderabad, India for carrying out the EBSD characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Chadha or M. Jahazi.

Additional information

Manuscript submitted September 3, 2016.

Appendix

Appendix

Arrhenius-type model[31] is used to describe the relationship between flow stress, deformation temperature and strain rate during high temperature deformation. It is given by

$$ \dot{\varepsilon } = AF\left( \sigma \right){ \exp} \left(- \frac{Q}{RT} \right) $$
(A1)

Generally, F (σ) is in the form of power function or exponential function or hyperbolic sine function as listed below:

$$ \begin{aligned} F \, \left( \sigma \right) = \sigma^{{n_{1} }} \,\left( {\alpha \sigma { < }0. 8} \right) \hfill \\ F \, \left( \sigma \right) \, = \, exp \, (\beta \sigma ) \, \left( {\alpha \sigma { > 1}. 2} \right) \hfill \\ F \, \left( \sigma \right) \, = \, \left[ {sinh \, \left( {\alpha \sigma } \right)} \right]^{n} \left( {{\text{for all }}\sigma } \right) \hfill \\ \end{aligned}, $$
(A2)

where, A, n 1, n, α and β are the material constants, with α = β/ n 1 .

In order to find the constants, the value of F (σ) is put into Eq. [A2] which gives the relationship of low-level stress (ασ < 0.8) and high-level stress (ασ > 1.2).

$$ \begin{aligned} \dot{\varepsilon } &= B\sigma^{{n_{1} }} \hfill \\ \dot{\varepsilon }& = B' {\exp} \big(\beta \sigma\big) \hfill \\ \end{aligned} $$
(A3)

B, B, and \( n_{1} \) are material constants which are independent of deformation temperatures. These constants can be calculated by taking logarithm on both sides of Eq. [A3].

$$ \begin{aligned} \ln \sigma = \frac{{{ \ln }\dot{\varepsilon }}}{{n_{1} }} - \frac{{{ \ln }B}}{{n_{1} }} \hfill \\ \sigma = \frac{{{ \ln }\dot{\varepsilon }}}{\beta } - \frac{{{ \ln }B'}}{\beta } \hfill \\ \end{aligned} $$
(A4)

Plotting graphs of lnσ vs ln \( \dot{\varepsilon } \) and σ vs ln \( \dot{\varepsilon } , \) by the linear regression method gives the values of \( n_{1 } \)and β. The values are calculated using the average values of slope of parallel lines from different temperatures. Putting these values, value of α= β/ n 1 can be found.

In order to calculate the value of Q, logarithm on both sides of Eq. [A2] of the function is taken for all values of stress and then assuming it as independent of temperature gives,

$$ \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right] = \frac{1}{n}{ \ln }\dot{\varepsilon } + \frac{Q}{nRT} - \frac{1}{n}{ \ln }A $$
(A5)

\( ln\dot{\varepsilon } \) and 1/T are considered as two independent variables. Differentiating the above equation gives,

$$ n = \left. {\frac{{\partial { \ln }\dot{\varepsilon }}}{{\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]}}} \right|_{T} $$
(A6)
$$ Q = \left. {nR\frac{{\partial \ln \left[ {\sinh \left( {\alpha \sigma } \right)} \right]}}{{\partial \left( {\frac{1}{T}} \right)}}} \right|_{{\dot{\varepsilon }}} $$
(A7)

(T and \( \dot{\varepsilon } \) taken as independent variables).

Using these equations, plots of \( { \ln }[\sinh \left( {\alpha \sigma } \right)] - { \ln }\dot{\varepsilon } \) and \( {\text{ln}}[\sinh \left( {\alpha \sigma } \right)] - \left( {\frac{1}{T}} \right) \) can be generated and subsequently the value of n and Q can be found using regression analysis of experimental results. The value of the constant lnA can be found from the intercept of \( { \ln }[\sinh \left( {\alpha \sigma } \right)] - { \ln }\dot{\varepsilon } \) plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadha, K., Shahriari, D., Tremblay, R. et al. Deformation and Recrystallization Behavior of the Cast Structure in Large Size, High Strength Steel Ingots: Experimentation and Modeling. Metall Mater Trans A 48, 4297–4313 (2017). https://doi.org/10.1007/s11661-017-4177-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4177-8

Navigation