Skip to main content
Log in

Effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting hypereutectic Al–22Si–0.4Mg alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting Al–22Si–0.4Mg alloy have been investigated. Different Cu contents (1.5, 2.5, 3.5, 4.5 wt%) were added in Al–22Si–0.4Mg alloy. In the as-cast microstructure, the amount, volume fraction, and average size of Al2Cu phase increase with more Cu addition. The morphology of grain boundary white Al2Cu phase turns from particle to lump. The UTS (ultimate tensile strength) of Al–22Si–x Cu–0.4Mg alloy improves with Cu added, which is mainly caused by the strengthening effect of intergranular Al2Cu. The hot tearing susceptibility apparently rises with Cu content increased, which is due to longer quaternary eutectic reaction time, larger amount of residual intergranular Cu-rich liquid film spreading out over α-Al grain boundary, and higher quaternary eutectic reaction temperature. Considering both the mechanical property and hot tearing susceptibility, optimal Cu content for die casting Al–22Si–0.4Mg alloy found in this paper is 2.5 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, and H.W. Doty: Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8% Si cast alloy. Mater. Des. 30 (10), 3943–3957 (2009).

    Article  CAS  Google Scholar 

  2. C. Cui, A. Schulz, K. Schimanski, and H-W. Zoch: Spray forming of hypereutectic Al–Si alloys. J. Mater. Process. Technol. 209 (11), 5220–5228 (2009).

    Article  CAS  Google Scholar 

  3. A. Hekmat-Ardakan and F. Ajersch: Thermodynamic evaluation of hypereutectic Al–Si (A390) alloy with addition of Mg. Acta Mater. 58 (9), 3422–3428 (2010).

    Article  CAS  Google Scholar 

  4. C.L. Xu, Q.C. Jiang, Y.F. Yang, H.Y. Wang, and J.G. Wang: Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al–Si alloy. J. Alloys Compd. 422 (1), L1–L4 (2006).

    Article  CAS  Google Scholar 

  5. M. Sha, S. Wu, X. Wang, L. Wan, and P. An: Effects of cobalt content on microstructure and mechanical properties of hypereutectic Al–Si alloys. Mater. Sci. Eng., A 535, 258–263 (2012).

    Article  CAS  Google Scholar 

  6. M. Chen and A.T. Alpas: Ultra-mild wear of a hypereutectic Al–18.5 wt% Si alloy. Wear 265 (1), 186–195 (2008).

    Article  CAS  Google Scholar 

  7. A. Hekmat-Ardakan, X. Liu, F. Ajersch, and X-G. Chen: Wear behaviour of hypereutectic Al–Si–Cu–Mg casting alloys with variable Mg contents. Wear 269 (9), 684–692 (2010).

    Article  CAS  Google Scholar 

  8. P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J-M. Rodriguez-Ibabe: Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys. Acta Mater. 44 (5), 1717–1727 (1996).

    Article  CAS  Google Scholar 

  9. P. Kapranos, D.H. Kirkwood, H.V. Atkinson, J.T. Rheinlander, J.J. Bentzen, P.T. Toft, C.P. Debel, G. Laslaz, L. Maenner, S. Blais, J.M. Rodtiguez-Ibabe, L. Lasa, P. Giordano, G. Chiarmetta, and A. Giese: Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy. J. Mater. Process. Technol. 135 (2), 271–277 (2003).

    Article  CAS  Google Scholar 

  10. S-s. Wu, G. Zhong, P. An, L. Wan, and H. Nakae: Microstructural characteristics of Al–20Si–2Cu–0.4Mg–1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment. Trans. Nonferrous Met. Soc. China 22 (12), 2863–2870 (2012).

    Article  CAS  Google Scholar 

  11. C.M. Chen, C.C. Yang, and C.G. Chao: A novel method for net-shape forming of hypereutectic Al–Si alloys by thixocasting with powder preforms. J. Mater. Process. Technol. 167 (1), 103–109 (2005).

    Article  CAS  Google Scholar 

  12. Y. Birol: Cooling slope casting and thixoforming of hypereutectic A390 alloy. J. Mater. Process. Technol. 207 (1), 200–203 (2008).

    Article  CAS  Google Scholar 

  13. H. Ye: An overview of the development of Al–Si-alloy based material for engine applications. J. Mater. Eng. Perform. 12 (3), 288–297 (2003).

    Article  CAS  Google Scholar 

  14. H. KamguoKamga, D. Larouche, M. Bournane, and A. Rahem: Hot tearing of aluminum–copper B206 alloys with iron and silicon additions. Mater. Sci. Eng., A 527 (27), 7413–7423 (2010).

    Article  Google Scholar 

  15. G. Cao and S. Kou: Hot cracking of binary Mg–Al alloy castings. Mater. Sci. Eng., A 417 (1–2), 230–238 (2006).

    Article  Google Scholar 

  16. M. Zeren, E. Karakulak, and S. Gümüş: Influence of Cu addition on microstructure and hardness of near-eutectic Al–Si–x Cu-alloys. Trans. Nonferrous Met. Soc. China 21 (8), 1698–1702 (2011).

    Article  CAS  Google Scholar 

  17. G. Wang, X. Bian, W. Wang, and J. Zhang: Influence of Cu and minor elements on solution treatment of Al–Si–Cu–Mg cast alloys. Mater. Lett. 57 (24), 4083–4087 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project is sponsored by National Natural Science Foundation of China (No. 51404153) and Shanghai Yang-fan Program (No. 14YF1402000). The authors would like to thank Dr. Chaoying Xie for her kind help in revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Zhang, L., Wu, G. et al. Effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting hypereutectic Al–22Si–0.4Mg alloy. Journal of Materials Research 31, 3629–3637 (2016). https://doi.org/10.1557/jmr.2016.388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.388

Navigation