Skip to main content
Log in

Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The different nanoprecipitates formed in a 6061 aluminum alloy during aging at 453 K (180 °C), with or without 168 hours of pre-natural aging (NA), and the age-hardening response of the alloy were investigated by atom probe tomography (APT) and hardness testing. A hardness plateau developed between 2 and 8 hours in both the artificial aging (AA) and artificial aging with pre-natural aging (NAAA) samples. The hardness of NAAA samples was lower than that of AA samples when artificially aged for the same time. A 168-hour NA led to the formation of solute atom clusters in the matrix. The NA accelerated the precipitation kinetics of the following AA. The solute atom clusters gave the highest hardness increment per unit volume fraction. The β″ precipitates were dominant in the samples at the hardness plateau. The average normalized Mg:Si ratios of the solute atom clusters and GP zones were near 1. The average Mg:Si ratio of β″ precipitates increased from 1.3 to 1.5 upon aging for 2 hours. The microstructural evolution of samples with or without NA and its influence on the strengthening effects are discussed based on the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Nageswara Rao, B. Viswanadh, and R. Jayaganthan: Mater. Sci. Eng., 2014, vol. A606, pp. 1–10.

    Article  Google Scholar 

  2. C. Cayron and P.A. Buffat: Acta Mater., 2000, vol. 48, pp. 2639–53.

    Article  Google Scholar 

  3. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P.J. Uggowitzer: Acta Mater., 2011, vol. 59, pp. 3352–63.

    Article  Google Scholar 

  4. L.F. Cao, P.A. Rometsch, and M.J. Couper: Mater. Sci. Eng., 2013, vol. A559, pp. 257–61.

    Article  Google Scholar 

  5. M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537–48.

    Article  Google Scholar 

  6. J. Buha, R.N. Lumley, A.G. Crosky, and K. Hono: Acta Mater., 2007, vol. 55, pp. 3015–24.

    Article  Google Scholar 

  7. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–3904.

    Article  Google Scholar 

  8. C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart: Ultramicroscopy, 2009, vol. 109, pp. 585–92.

    Article  Google Scholar 

  9. S. Pogatscher, H. Antrekowitsch, H. Leitner, A.S. Sologubenko, and P.J. Uggowitzer: Scripta Mater., 2013, vol. 68, pp. 158–61.

    Article  Google Scholar 

  10. R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer: Acta Mater., 2010, vol. 58, pp. 4923–39.

    Article  Google Scholar 

  11. A. Serizawa, S. Hirosawa, and T. Sato: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 243–51.

    Article  Google Scholar 

  12. E. Clouet, L. Lae, T. Epicier, W. Lefebvre, M. Nastar, and A. Deschamps: Nat. Mater., 2006, vol. 5, pp. 482–88.

    Article  Google Scholar 

  13. G. Sha, H. Moller, W.E. Stumpf, J.H. Xia, G. Govender, and S.P. Ringer: Acta Mater., 2012, vol. 60, pp. 692–701.

    Article  Google Scholar 

  14. A.K. Gupta, D.J. Lloyd, and S.A. Court: Mater. Sci. Eng., 2001, vol. A316, pp. 11–17.

    Article  Google Scholar 

  15. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Træholt, U. Tundal, and O. Reiso: Acta Mater., 1998, vol. 46, pp. 3283–98.

    Article  Google Scholar 

  16. H.W. Zandbergen, S.J. Andersen, and J. Jansen: Science, 1997, vol. 277, pp. 1221–15.

    Article  Google Scholar 

  17. H.S. Hasting, A.G. Frøseth, S.J. Andersen, R. Vissers, J.C. Walmsley, and C.D. Marioara: J. Appl. Phys., 2009, vol. 106, p. 123527.

    Article  Google Scholar 

  18. W.F. Miao and D.E. Laughlin: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 361–71.

    Article  Google Scholar 

  19. R. Vissers, M.A. Van Huis, and J. Janden: Acta Mater., 2007, vol. 55, pp. 3815–23.

    Article  Google Scholar 

  20. M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad: Scripta Mater., 2011, vol. 64, pp. 817–20.

    Article  Google Scholar 

  21. M.K. Miller: Atom Probe Tomography: Analysis at the Atomic Level, 1st ed., Kluwer Academic/Plenum Publishers, New York, NY, 1999, p. 33.

    Google Scholar 

  22. Z.Q. Zheng, W.Q. Liu, Z.Q. Liao, S.P. Ringer, and G. Sha: Acta Mater., 2013, vol. 61, pp. 3724–34.

    Article  Google Scholar 

  23. M. Torsæter, H.S. Hasting, W. Lefebvre, C.D. Marioara, J.C. Walmsley, S.J. Andersen, and R. Holmestad: J. Appl. Phys., 2010, vol. 108, p. 073527.

    Article  Google Scholar 

  24. J. Buha, R.N. Lumley, and A.G. Crosky: Phil. Mag., 2008, vol. 88, pp. 373–90.

    Article  Google Scholar 

  25. B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer: Atom Probe Microscopy, Springer, New York, NY, 2012.

    Book  Google Scholar 

  26. A. Kelly and R.B. Nicholson: Progr. Mater. Sci., 1963, vol. 10, pp. 149–391.

    Google Scholar 

  27. P. Haasen: in Materials Science and Technology, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH Publishers, New York, 1991.

  28. W.J. Poole, X. Wang, D.J. Lloyd, and J.D. Embury: Phil. Mag., 2005, vol. 85, pp. 3113–35.

    Article  Google Scholar 

  29. A. Serizawa, T. Sato, and W.J. Poole: Phil. Mag. Lett., 2010, vol. 90, pp. 279–87.

    Article  Google Scholar 

  30. M.J. Starink, L.F. Cao, and P.A. Rometsch: Acta Mater., 2012, vol. 60, pp. 4194–4207.

    Article  Google Scholar 

  31. S. Esmaeili and D.J. Lloyd: Acta Mater., 2005, vol. 53, pp. 5257–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research Project and Development Program of China (Grant No. 2016YFB0700401) and the National Natural Science Foundation of China (Grant No. 51301103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Manuscript submitted March 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, W. Nanoprecipitates and Their Strengthening Behavior in Al-Mg-Si Alloy During the Aging Process. Metall Mater Trans A 48, 1990–1998 (2017). https://doi.org/10.1007/s11661-017-3955-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3955-7

Keywords

Navigation