Skip to main content
Log in

Solidification Behavior and Cooling Curves for Hypereutectic Fe-21 At. Pct B Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The cooling curves for Fe-21 at. pct B hypereutectic alloy were measured, which are correlated with the solidification behaviors. At small undercoolings, the cooling curve has two recalescences, corresponding to L → Fe2B and L → Fe2B + Fe, respectively. At moderate undercoolings, also two recalescences can be observed from the cooling curve, corresponding to L → Fe3B and L + Fe3B → Fe2B + Fe. At large undercoolings, the cooling curve has only one recalescence, corresponding to L → Fe3B + Fe. From TEM analysis, the matrix phase is α-Fe in cases of solidification at small and moderate undercoolings, but is Fe3B in case of large undercooling. HRTEM analysis shows that α-Fe stores deformation energy by irregular atom region, but intermetallic phase (Fe2B or Fe3B) stores deformation energy by increasing grain boundaries and stacking faults, which can explain why α-Fe has good deformation ability and small hardness, but the Fe2B or Fe3B phase on the contrary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Farahany, A. Ourdjini, M.H. Idris, and S.G. Shabestari: J. Therm. Anal. Calorim., 2013, vol. 114, pp. 705–17.

    Article  Google Scholar 

  2. W. Oldfield: J. Less Common Met., 1959, vol. 1, pp. 77–79.

    Article  Google Scholar 

  3. M.S. Rahman, N. Guizani, M. Al-Khaseibi, S.A. Al-Hinai, S.S. Al-Maskri, and K. Al-Hamhami: Food Hydrocolloid., 2002, vol. 16, pp. 653–59.

    Article  Google Scholar 

  4. J.W. Gibbs, M.J. Kaufman, R.E. Hackenberg, and P.F. Mendez: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2216–23.

    Article  Google Scholar 

  5. M. Djurdjevic, D. Muche, B. Stauder, and K. Eigenfeld: Prakt. Metallogr./Pract. Metallogr., 2012, vol. 49, pp. 356–76.

    Google Scholar 

  6. S.A. Moir and D.M. Herlach: Acta Mater., 1997, vol. 45, pp. 2827–37.

    Article  Google Scholar 

  7. D.M. Herlach, J. Gao, D. Holland-Moritz, and T. Volkmann: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 9–15.

    Article  Google Scholar 

  8. T.G. Woodcock, R. Hermann, and W. Löser: Calphad, 2007, vol. 31, pp. 256–63.

    Article  Google Scholar 

  9. L. Battezzati, C. Antonione, and M. Baricco: J. Alloys Compd., 1997, vol. 247, pp. 164–71.

    Article  Google Scholar 

  10. M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco: Intermetallics, 2003, vol. 11, pp. 1293–99.

    Article  Google Scholar 

  11. V. Bialiauskaya and T. Ando: J. Mater. Process. Technol., 2010, vol. 210, pp. 487–96.

    Article  Google Scholar 

  12. W. Yang, F. Liu, G.C. Yang, Z.F. Xu, J.H. Wang, and Z.T. Wang: Thermochim. Acta, 2012, vol. 527, pp. 47–51.

    Article  Google Scholar 

  13. C.L. Yang, F. Liu, G.C. Yang, and Y.H. Zhou: J. Cryst. Growth, 2009, vol. 311, pp. 404–12.

    Article  Google Scholar 

  14. T.G. Chart: Comm. Comm. Eur. CECA No. 7210-CA/3/303, 1981.

  15. P. H. Shingu: Amorphous Material—Physics and Technology, Committee of the Special Project Research on Amorphous Material, 1983, p. 149.

  16. B. Hallemans, P. Wollants, and J.R. Roos: Z. Metallkd., 1994, vol. 85, pp. 676–82.

    Google Scholar 

  17. E. Bosco and M. Baricco: Metall. Ital., 2001, vol. 93, pp. 45–51.

    Google Scholar 

  18. O. Tolochko and J. Agren: J. Phase Equilib., 2001, vol. 21, pp. 19–24.

    Article  Google Scholar 

  19. M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco: Calphad, 2001, vol. 25, pp. 625–37.

    Article  Google Scholar 

  20. M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco: Intermetallics, 2003, vol. 11, pp. 1293–99.

    Article  Google Scholar 

  21. D. Zhang, J.F. Xu, and F. Liu: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5232–39.

    Article  Google Scholar 

  22. M. Palumbo, C. Papandrea, and L. Battezzati: J. Mater. Sci., 2005, vol. 40, pp. 2431–35.

    Article  Google Scholar 

  23. J.F. Xu, D. Zhang, F. Liu, and Z.Y. Jian: J. Mater. Res., 2015, vol. 30, pp. 3307–15.

    Article  Google Scholar 

  24. J.F. Xu, F. Liu, and D. Zhang: J. Mater. Res., 2013, vol. 28, pp. 3347–54.

    Article  Google Scholar 

  25. F. Liu, J.F. Xu, D. Zhang, and Z.Y. Jian: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4810–19.

    Article  Google Scholar 

  26. J.F. Xu, F. Liu, and D. Zhang: J. Mater. Res., 2013, vol. 28, pp. 1891–1902.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Natural Science Foundation of China (Grant Nos. 51401156, 51371133, and 51671151) and the Science and Technology Program of Shaanxi Province (Grant No. 2016KJXX-87). One of the authors (JX) also appreciates C.Y. Hu and K. Wang for their help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Xu.

Additional information

Manuscript submitted June 30, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 1687 kb)

Supplementary material 2 (WMV 679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Jian, Z., Dang, B. et al. Solidification Behavior and Cooling Curves for Hypereutectic Fe-21 At. Pct B Alloy. Metall Mater Trans A 48, 1817–1826 (2017). https://doi.org/10.1007/s11661-016-3941-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3941-5

Keywords

Navigation