Skip to main content
Log in

In Situ Observation of the Competition Between Metastable and Stable Phases in Solidification of Undercooled Fe-17at. pctB Alloy Melt

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-speed video (HSV) technique was used to investigate the solidification behavior of undercooled Fe-17at. pctB alloy melt. Competitive growth between Fe/Fe3B (metastable eutectic) and Fe/Fe2B (stable eutectic) was captured, which is correlated with the critical nucleation undercooling \( \Delta T_{n}^{*} \)[=104 K (104 °C)] and the critical growth undercooling \( \Delta T_{\text{g}}^{*} \)[=151 K~183 K (151 °C~183 °C)]. For the initial undercooling, \( \Delta T < \Delta T_{n}^{*} \), only the stable eutectic reaction (L → Fe/Fe2B) occurs during solidification, whereas, for \( \Delta T > \Delta T_{n}^{*} \), the metastable eutectic reaction (L → Fe/Fe3B) occurs firstly, followed by the stable eutectic reaction. Nevertheless, \( \Delta T > \Delta T_{n}^{*} \) does not guarantee that the metastable phase (Fe3B) appears finally. Only if \( \Delta T > \Delta T_{\text{g}}^{*} \), Fe3B phase can be found in the room microstructure, as the growth velocity of metastable eutectic (Fe/Fe3B) is larger than stable eutectic (Fe/Fe2B) from HSV results; otherwise, the final structure consists of Fe2B and α-Fe. Accordingly, not only the competitive nucleation, but the competitive growth also determines the final microstructure of Fe-17at. pctB alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Turnbull: Metall. Trans. B, 1981, vol. 12B, pp. 217–30.

    Article  Google Scholar 

  2. S.A. Moir and D.M. Herlach: Acta Mater., 1997, vol. 45, pp. 2827–37.

    Article  Google Scholar 

  3. D.M. Herlach, J. Gao, D. Holland-Moritz, and T. Volkmann: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 9–15.

    Article  Google Scholar 

  4. T.G. Woodcock, R. Hermann, and W. Löser: CALPHAD, 2007, vol. 31, pp. 256–63.

    Article  Google Scholar 

  5. T. Aoyama and K. Kuribayashi: Acta Mater., 2000, vol. 48, pp. 3739–44.

    Article  Google Scholar 

  6. O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe, and D.M. Herlach: J. Cryst. Growth, 2006, vol. 297, pp. 211–22.

    Article  Google Scholar 

  7. C. Yang, J. Gao, Y.K. Zhang, M. Kolbe, and D.M. Herlach: Acta Mater., 2011, vol. 59, pp. 3915–26.

    Article  Google Scholar 

  8. K. Nagashio, J. Sasaki, and K. Kuribayashi: Mater. Trans., 2004, vol. 45, pp. 2723–27.

    Article  Google Scholar 

  9. A. Masuno, Y. Arai, and J. Yu: Phase Transit., 2008, vol. 81, pp. 553–59.

    Article  Google Scholar 

  10. L. Battezzati, C. Antonione, and M. Baricco: J. Alloys Compd., 1997, vol. 247, pp. 164–71.

    Article  Google Scholar 

  11. M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco: Intermetallics, 2003, vol. 11, pp. 1293–99.

    Article  Google Scholar 

  12. V. Bialiauskaya and T. Ando: J. Mater. Process. Technol., 2010, vol. 210, pp. 487–96.

    Article  Google Scholar 

  13. W. Yang, F. Liu, G.C. Yang, Z.F. Xu, J.H. Wang, and Z.T. Wang: Thermochim. Acta, 2012, vol. 527, pp. 47–51.

    Article  Google Scholar 

  14. C.L. Yang, F. Liu, G.C. Yang, and Y.H. Zhou: J. Cryst. Growth, 2009, vol. 311, pp. 404–12.

    Article  Google Scholar 

  15. F. Liu, J.F. Xu, D. Zhang, and Z.Y. Jian: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4810–19.

    Article  Google Scholar 

  16. D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473–88.

    Article  Google Scholar 

  17. D. Turnbull: J. Appl. Phys., 1950, vol. 21, pp. 1022–28.

    Article  Google Scholar 

  18. M. Palumbo, G. Cacciamani, E. Bosco, and M. Baricco: CALPHAD, 2001, vol. 25, pp. 625–37.

    Article  Google Scholar 

  19. M. Palumbo, C. Papandrea, and L. Battezzati: J. Mater. Sci., 2005, vol. 40, pp. 2431–35.

    Article  Google Scholar 

  20. B. Feuerbacher: Mater. Sci. R, 1989, vol. 4, pp. 1–40.

    Article  Google Scholar 

  21. D.M. Herlach, F. Gillessen, T. Volkmann, M. Wollgarten, and K. Urban: Phys. Rev. B, 1992, vol. 46, pp. 5203–10.

    Article  Google Scholar 

  22. C. Yang, G. Sheng, G. Chen and F. Liu: J. Magn. Magn. Mater., 2013, vol. 346, pp. 44–47.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Basic Research Program of China (Nos. 2011CB610403 and 2011CB632904), the China National Funds for Distinguished Young Scientists (No. 51125002), the Natural Science Foundation of China (Nos. 51431008, 51401156 and 51134011), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JM6225), the President fund of Xi’an Technological University (No. XAGDXJJ1307) and the Fundamental Research Fund of Northwestern Polytechnical University (No. JC20120223). D. Zhang is also appreciates C.Y. Hu, K. Wang and Z.W. Zhu for their help in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfeng Xu or Feng Liu.

Additional information

Manuscript submitted January 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xu, J. & Liu, F. In Situ Observation of the Competition Between Metastable and Stable Phases in Solidification of Undercooled Fe-17at. pctB Alloy Melt. Metall Mater Trans A 46, 5232–5239 (2015). https://doi.org/10.1007/s11661-015-3104-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3104-0

Keywords

Navigation