Skip to main content
Log in

A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.S. Piwonka and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 1157–65.

    Google Scholar 

  2. K. Kubo and R.D. Pehlke: MTB, 1985, vol. 16, pp. 359-366.

    Article  Google Scholar 

  3. A.S. Sabau and S. Viswanathan: Metall. Mater. Trans. B, 2002, vol. 33, pp. 243-255.

    Article  Google Scholar 

  4. Ch. Pequet, M. Rappaz and M. Gremaud: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2095–2106.

    Article  Google Scholar 

  5. P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–4169.

    Article  Google Scholar 

  6. R.C. Atwood, S. Sridhar, W. Zhang, and P.D. Lee: Acta Mater., 2000, vol. 48, pp. 405-417.

    Article  Google Scholar 

  7. R.W. Hamilton, D. See, S. Butler, and P.D. Lee: Mater. Sci. Eng. A, 2003, vol. 343, pp. 290–300.

    Article  Google Scholar 

  8. P.D. Lee and J.D. Hunt: Modeling of Casting, Welding, and Advanced Solidification Processes VII, TMS, Warrendale, PA, 1995, pp. 585–92.

    Google Scholar 

  9. P.D. Lee and J.D. Hunt: Scripta Mater., 1997, vol. 36, pp. 399-404.

    Article  Google Scholar 

  10. R.C. Atwood and P. D. Lee: Metall. Mater. Trans. B, 2002, vol. 33, pp. 209-221.

    Article  Google Scholar 

  11. P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15-30.

    Article  Google Scholar 

  12. D. M. Stefanescu: Int. J. Cast Met. Res., 2005, vol. 18, pp. 129-143.

    Article  Google Scholar 

  13. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40, pp. 163-175.

    Article  Google Scholar 

  14. K.D. Carlson, Z. Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38, pp. 541-555.

    Article  Google Scholar 

  15. E. Niyama, T. Uchida, M. Morikawa, and S. Saito: AFS Int. Cast Met. J., 1982, vol. 7, pp. 52–63.

    Google Scholar 

  16. J. Guo, C. Beckermann, K.D. Carlson, D. Hirvo, K. Bell, T. Moreland, J. Gu, J. Clews, S. Scott, G. Couturier, and D. Backman: IOP Conference Series: Materials Science and Engineering, 2015, vol. 84, p. 012003.

    Article  Google Scholar 

  17. L. Yao, S. Cockcroft, J. Zhu, and C. Reilly: Metall. Mater. Trans. A, 2011, vol. 42, pp. 4137-4148.

    Article  Google Scholar 

  18. F.G. Blake: Acoustic Research Laboratory Harvard University, 1949, Technical Memoranda No. 12.

  19. C.E. Brennen: Cavitation and Bubble Dynamics, Cambridge University Press, Cambridge, 2013.

    Book  Google Scholar 

  20. D.M. Stefanescu and A.V. Catalina: Int. J. Cast Met. Res., 2011, vol. 24, pp. 144-150.

    Article  Google Scholar 

  21. M. Felberbaum, E. Landry-Désy, L. Weber, and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 2302-2308.

    Article  Google Scholar 

  22. JMatPro, Sente Software Ltd., Surrey Technology Center, Surrey GU2 7YG, United Kingdom.

  23. D. Emadi and J.E. Gruzleski: AFS Trans., 1994, vol. 102, pp. 307–12.

    Google Scholar 

  24. Q.T. Fang and D.A. Gragner: AFS Trans., 1989, vol. 97, pp. 989–1000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beckermann.

Additional information

Manuscript submitted June 20, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalajzadeh, V., Carlson, K.D., Backman, D.G. et al. A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification. Metall Mater Trans A 48, 1797–1816 (2017). https://doi.org/10.1007/s11661-016-3940-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3940-6

Keywords

Navigation