Skip to main content
Log in

Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The adiabatic shear susceptibility of AISI321 stainless steels with different grain boundary character distributions (GBCDs) was investigated by means of split-Hopkinson pressure bar. The results indicate that the width of the adiabatic shear band of the specimen after thermomechanical processing (TMP) treatment is narrower. The comparison of the stress collapse time, the critical stress, and the adiabatic shear forming energy suggests that the TMP specimens have lower adiabatic shear susceptibility than that of the solution-treated samples under the same loading condition. GBCD and grain size affected the adiabatic shear susceptibility. The high-angle boundary network of the TMP specimens was interrupted or replaced by the special grain boundary, and smaller grain size hindered the adiabatic shearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Sun, X.D. Yu, C.W. Tan, H. L. Ma, F.C. Wang and H.N. Cai: Mater. Sci. Eng. A, 2014, vol.595, pp 247–256.

    Article  Google Scholar 

  2. Z.P. Wan, Y.E. Zhu, H.W. Liu and Y .Tang: Mater. Sci. Eng. A, 2012, vol.531, pp155-163.

    Article  Google Scholar 

  3. Y. Yang, B.F. Wang, J. Xiong, Y. Zeng, Z. P. Chen and X. Y. Yang: Mater. Lett., 2006, vol.60, pp2198-2202.

    Article  Google Scholar 

  4. W. C. Lee, C.F. Lin, T. H. Chen and W. Z. Luo: J. Nucl. Mater., 2012, vol. 420, pp226–234.

    Article  Google Scholar 

  5. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado and T.R. McNelley: Acta Mater., 2003, vol.51, pp 1307-1325.

    Article  Google Scholar 

  6. B.F. Wang, Z.L. Liu, X.Y. Wang and Z.Z. Li: Mater. Sci. Eng. A, 2014, vol.610, pp301–308.

    Article  Google Scholar 

  7. Q. Xue, X.Z. Liao, Y.T. Zhu and G.T. Gray III: Mater. Sci. Eng. A, 2005, vol.410, pp 252–256.

    Article  Google Scholar 

  8. L.H. Dai, L.F. Liu and Y.L. Bai: Mater. Lett., 2004, vol.58, pp 1773-1776.

    Article  Google Scholar 

  9. J.X. Liu, S.K. Li, A.L. Fan and H.C. Sun: Mater. Sci. Eng. A 2008, vol. 487, pp 235-242.

    Article  Google Scholar 

  10. Y. Yang, X.M. Li, X.L. Tong, Q.M. Zhang, C.Y. Xu: Mater. Sci. Eng. A, 2010, vol. 528, pp 3130-3133.

    Article  Google Scholar 

  11. B.B. Singh, G. Sukumar, A. Bhattacharjee, K.S. Kumar, T.B. Bhat, A.K. Gogia: Mater Design, 2012, vol. 36, pp 640-649.

    Article  Google Scholar 

  12. Z.G. Wei, J.L. Yu, J.R. Li, Y.C. Li and S.S. Hu: Int. J. Impact Eng., 2001, vol.26, pp 843-852.

    Article  Google Scholar 

  13. W.S. Lee, T.H.Chen and G.T. Lu: Mater. Sci. Tech., 2010, vol.26, pp 720-725.

    Article  Google Scholar 

  14. X.Y. Wang, P.F. Yu, C. L. Tan: Mater. Sci. Tech., 2014, vol.30, pp 1966-1972.

    Article  Google Scholar 

  15. B. D. Alexandreanua, B. H. Sencera, V. Thaveeprungsripornb and G.S. Was: Acta Mater.,2003, vol.51, pp3831-3848.

    Article  Google Scholar 

  16. M. Shimada, H. Kokawa, Z. J. Wang, Y.S. Sato and I. Karibe: Acta Mater., 2002, vol.50, pp 2331-2341.

    Article  Google Scholar 

  17. B.M. Guyot and N.L. Richards: Mater. Sci. Eng. A, 2005, vol.395, pp 87-97.

    Article  Google Scholar 

  18. J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol.45, pp 635-649.

    Article  Google Scholar 

  19. U. Andrade, M.A. Meyers, K.S. Vecchio and A.H. Chokshi: Acta Metall. Mater.,1994, vol.42, pp3183-3195.

    Article  Google Scholar 

  20. D. G. Brandon: Acta Metall.,1966,vol.14, pp 1479-1484.

    Article  Google Scholar 

  21. Q. Li, P. Zmudzki, S. Alameeri, M.N. Bassim: Mater. Sci. Tech., 2004, vol.20, pp676-678.

    Article  Google Scholar 

  22. S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol.33, pp 667-676.

    Article  Google Scholar 

  23. M. El Wahabi, L. Gavard, J.M. Cabrera, J.M. Prado, F. Montheillet: Mater. Sci. Eng. A 2005, vol.393, pp 83–90.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51274245), NSAF (No. U1330126), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120162130006), the key project of State Key Laboratory of Explosion Science and Technology (No. KFJJ11-1), and the Natural Science Fund of Hunan (No. 14 jj2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yang.

Additional information

Manuscript submitted November 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Jiang, L., Luo, S. et al. Effect of Grain Boundary Character Distribution on the Adiabatic Shear Susceptibility. Metall Mater Trans A 47, 5589–5597 (2016). https://doi.org/10.1007/s11661-016-3721-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3721-2

Keywords

Navigation