Skip to main content
Log in

Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

To examine the influence of grain boundary engineering (GBE) on the work hardening behavior, the tensile tests were carried out on the non-GBE and GBE AL6XN super-austenitic stainless steel (ASS) samples with a comparable grain size at two strain rates of 10–2 s−1 and 10–4 s−1. The evolution of deformation microstructures was revealed by transmission electron microscopy (TEM) and quasi-in situ electron backscatter diffraction (EBSD) observations. The results show that the influence of GBE on the mechanical properties of AL6XN super-ASS is mainly manifested in the change of work hardening behavior. At the early stage of plastic deformation, GBE samples show a slightly lowered work hardening rate, since the special grain boundaries (SBs) of a high fraction induce a higher dislocation free path and a weaker back stress; however, with increasing plastic deformation amount, the work hardening rate of GBE samples gradually surpasses that of non-GBE samples due to the better capacity of maintainable work hardening that is profited from the inhibited dislocation annihilation by SBs. In a word, the enhanced capacity of sustained work hardening effectively postpones the appearance of necking point and thus efficaciously ameliorates the ductility of GBE samples under the premise of little changes in yield strength and ultimate tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.O. Ritchie, Nat. Mater. 10, 817 (2011)

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci. 51, 881 (2006)

    Article  CAS  Google Scholar 

  3. M.A. Meyers, K.K. Chawla, Mechanical behavior of materials (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  4. D. Han, X.J. Guan, Y. Yan, F. Shi, X.W. Li, Mater. Sci. Eng. A 743, 745 (2019)

    Article  CAS  Google Scholar 

  5. R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, X.H. An, Z.F. Zhang, Acta. Mater. 144, 613 (2018)

    Article  CAS  Google Scholar 

  6. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta. Mater. 62, 105 (2014)

    Article  CAS  Google Scholar 

  7. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Acta. Mater. 57, 1586 (2009)

    Article  CAS  Google Scholar 

  8. S. Qu, C.X. Huang, Y.L. Gao, G. Yang, S.D. Wu, Q.S. Zang, Z.F. Zhang, Mater. Sci. Eng. A. 475, 207 (2008)

    Article  Google Scholar 

  9. N. Tsuchida, Y. Tomota, H. Moriya, O. Umezawa, K. Nagai, Acta. Mater. 49, 3029 (2001)

    Article  CAS  Google Scholar 

  10. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta. Mater. 142, 283 (2018)

    Article  Google Scholar 

  11. S. Martin, C. Ullrich, D. Rafaja, Mater. Today. 2, S643 (2015)

    Google Scholar 

  12. Z. Zhuo, S. Xia, Q. Bai, B.X. Zhou, J. Mater. Sci. 53, 2844 (2018)

    Article  CAS  Google Scholar 

  13. X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Scr. Mater. 187, 216 (2020)

    Article  CAS  Google Scholar 

  14. X.J. Guan, Z.P. Jia, S.M. Liang, F. Shi, X.W. Li, J. Mater. Sci. Technol. 113, 82 (2022)

    Article  Google Scholar 

  15. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016)

    Article  CAS  Google Scholar 

  16. X. Dong, N. Li, Y.A. Zhou, H.B. Peng, Y.T. Qu, Q. Sun, H.J. Shi, R. Li, S. Xu, J.Z. Yan, J. Mater. Sci. Technol. 93, 244 (2021)

    Article  CAS  Google Scholar 

  17. F. Shi, L. Yan, J. Hu, L.F. Wang, T.Z. Li, W. Li, X.J. Guan, C.M. Liu, X.W. Li, Acta Metall. Sin. -Engl. Lett. 35, 1849 (2022)

    Article  CAS  Google Scholar 

  18. C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, M.L. Taheri, Acta. Mater. 144, 281 (2018)

    Article  CAS  Google Scholar 

  19. M. Kumar, W.E. King, A.J. Schwartz, Acta. Mater. 48, 2081 (2000)

    Article  CAS  Google Scholar 

  20. X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765, 138299 (2019)

    Article  CAS  Google Scholar 

  21. P.C. Zhao, B. Guan, Y.G. Tong, R.Z. Wang, X. Li, X.C. Zhang, S.T. Tu, J. Mater. Sci. Technol. 109, 54 (2022)

    Article  Google Scholar 

  22. Q.M. Wang, Y.J. Zhang, D. Han, X.W. Li, Acta Metall. Sin. -Engl. Lett. 35, 651 (2022)

    Article  Google Scholar 

  23. Z.Y. Wang, D. Han, X.W. Li, Mater. Sci. Eng. A 679, 484 (2017)

    Article  CAS  Google Scholar 

  24. D. Han, J.X. He, X.J. Guan, Y.J. Zhang, X.W. Li, Metals. 9, 151 (2019)

    Article  CAS  Google Scholar 

  25. P. Chen, S.C. Mao, Y. Liu, F. Wang, Y.F. Zhang, Z. Zhang, X.D. Han, Mater. Sci. Eng. A 580, 114 (2013)

    Article  CAS  Google Scholar 

  26. S.S. Rui, Q.N. Han, X. Wang, S.L. Li, X.F. Ma, Y. Su, Z.P. Cai, D. Du, H.J. Shi, Mater. Today. Commun. 27, 102445 (2021)

    Article  CAS  Google Scholar 

  27. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316 (2011)

    Article  CAS  Google Scholar 

  28. A.C. Leff, C.R. Weinberger, M.L. Taheri, Ultramicroscopy 153, 9 (2015)

    Article  CAS  Google Scholar 

  29. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Mater. Sci. Eng. A 527, 2738 (2010)

    Article  Google Scholar 

  30. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Acta. Mater. 59, 4387 (2011)

    Article  CAS  Google Scholar 

  31. A. Kundu, D.P. Field, Mater. Sci. Eng. A 667, 435 (2016)

    Article  CAS  Google Scholar 

  32. M.F. Ashby, Philos. Mag. A 21, 399 (1970)

    Article  CAS  Google Scholar 

  33. Y.F. Wang, C.X. Huang, Q. He, F.J. Guo, M.S. Wang, L.Y. Song, Y.T. Zhu, Scr. Mater. 170, 76 (2019)

    Article  CAS  Google Scholar 

  34. X. Fang, Q.Q. Xue, K.Y. Yu, R.G. Li, D.Q. Jiang, L. Ge, Y. Ren, C.F. Chen, X.L. Wu, Mater. Res. Lett. 8, 417 (2020)

    Article  CAS  Google Scholar 

  35. S. Shukla, D. Choudhuri, T.H. Wang, K.M. Liu, R. Wheeler, S. Williams, B. Gwalani, R.S. Mishra, Mater. Res. Lett. 6, 676 (2018)

    Article  Google Scholar 

  36. S. Poulat, B. Décamps, L. Priester, Philos. Mag. A 77, 1381 (1998)

    Article  CAS  Google Scholar 

  37. N.V. Malyar, B. Grabowski, G. Dehm, C. Kirchlechner, Acta Mater. 161, 412 (2018)

    Article  CAS  Google Scholar 

  38. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304, 422 (2004)

    Article  CAS  Google Scholar 

  39. D. Han, Z.Y. Wang, Y. Yan, F. Shi, X.W. Li, Scr. Mater. 133, 59 (2017)

    Article  CAS  Google Scholar 

  40. D. Han, Y.J. Zhang, X.W. Li, Acta Mater. 205, 116559 (2021)

    Article  CAS  Google Scholar 

  41. G.R. Leverant, M. Gell, S.W. Hopkins, Mater. Sci. Eng. A 8, 125 (1971)

    Article  CAS  Google Scholar 

  42. H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)

    Article  CAS  Google Scholar 

  43. U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48, 171 (2003)

    Article  CAS  Google Scholar 

  44. M. Murayama, K. Hono, H. Hirukawa, T. Ohmura, S. Matsuoka, Scr. Mater. 41, 467 (1999)

    Article  CAS  Google Scholar 

  45. M. Grujicic, X.W. Zhou, W.S. Owen, Mater. Sci. Eng. A 169, 103 (1993)

    Article  Google Scholar 

  46. C. Chen, F.C. Zhang, B. Lv, H. Ma, L. Wang, H.W. Zhang, W. Shen, Mater. Sci. Eng. A 761, 138015 (2019)

    Article  CAS  Google Scholar 

  47. X.L. Liu, Q.Q. Xue, W. Wang, L.L. Zhou, P. Jiang, H.S. Ma, F.P. Yuan, Y.G. Wei, X.L. Wu, Materialia 7, 100376 (2019)

    Article  CAS  Google Scholar 

  48. M.Y. Jiang, G. Monnet, B. Devincre, J. Mech. Phys. Solids 143, 104071 (2020)

    Article  Google Scholar 

  49. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, Y.T. Zhu, Z. Horita, T.G. Langdon, Scr. Mater. 60, 52 (2009)

    Article  CAS  Google Scholar 

  50. H. Shao, D. Shan, K.X. Wang, G.J. Zhang, Y.Q. Zhao, Results. Phys. 15, 102722 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51871048 and 52171108. Special thanks to Mr. J.N. Deng, Y. Dong and Ms. N. Zhang in Analytical and Testing Center of Northeastern University for the assistance with TEM and EBSD characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Ethics declarations

Conflicts of Interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X.J., Jia, Z.P., Varkani, M.A.N. et al. Effect of Grain Boundary Engineering on the Work Hardening Behavior of AL6XN Super-Austenitic Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 36, 681–693 (2023). https://doi.org/10.1007/s40195-022-01493-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01493-5

Keywords

Navigation