Skip to main content
Log in

Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.J. Valencia, T.J. Mccabe, and H. Dong: in Advances in Powder Metallurgy and Particulate Materials, vol. 6, M. Philips and J. Porter, eds., Metal Powder Industries Federation, Princeton, 1995, pp. 205–212.

  2. T. Baba, H. Miura, T. Honda, and Y. Tokuyama: Adv. Powder Metall. Part. Mater., 1995, vol. 6, p. 271.

  3. R. M. German and D. Kubish: Int. J. Powder Metall., 1993, vol. 29, pp. 47.

    Google Scholar 

  4. Y. Wu, R.M. German, D. Blaine, B. Marx and C. Schlaefer, J. Mater. Sci., 2002, vol. 37, p. 3573.

    Article  Google Scholar 

  5. H. Zhang and R.M. German: Proceedings of The 1992 Powder Injection Molding Symposium, Metal Powder Industries Federation, Princeton, NJ, 1992, p. 219.

  6. K. Kamada, M. Nakmura, and H. Horie: Proceedings of 2000 Powder Metallurgy World Congress, Kyoto, Japan, 2000, p. 1021.

  7. R. L. Coble: J. Appl. Phys., 1961, vol. 32, pp. 787–92.

    Article  Google Scholar 

  8. V. V. Skorohod: Rheological Basis of the Theory of Sintering. Naukova Dumka, Kiev, 1972.

    Google Scholar 

  9. G.C. Kuczynski: Mater. Sci. Monogr., 1981, vol. 8, pp. 44–52.

    Google Scholar 

  10. S. Helle, K. E. Easterling, and M. F. Ashby: Acta Metall., 1985, vol. 33, pp. 2163–74.

    Article  Google Scholar 

  11. M. N. Rahaman, L. C. De Jonghe, and R. J. Brook: J. Am. Ceram. Soc., 1986, vol. 69, pp. 53–58.

    Article  Google Scholar 

  12. R. K. Bordia and G. W. Scherer: Acta Metall., 1988, vol. 36, pp. 2393–97.

    Article  Google Scholar 

  13. M.F. Ashby: Background Reading HIP 6.0, University of Cambridge, Cambridge, UK, 1990.

    Google Scholar 

  14. J. Besson and M. Abouaf: Acta Metall. Mater., 1991, vol. 39, pp. 2225–34.

    Article  Google Scholar 

  15. J. D. Hansen, R. P. Rusin, M.-H. Teng, and D. L. Johnson: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1129–35.

    Article  Google Scholar 

  16. R. M. McMeeking and L. T. Kuhn: Acta Metall. Mater., 1992, vol. 40, pp. 961–69.

    Article  Google Scholar 

  17. Z.-Z. Du and A. C. F. Cocks: Acta Metall. Mater., 1992, vol. 40, pp.1969–79.

    Article  Google Scholar 

  18. Z.-Z. Du and A. C. F. Cocks: Acta Metall. Mater., 1992, vol. 40, pp. 1981–94

    Article  Google Scholar 

  19. Y. S. Kwon, G. Son, J. Suh, and K. T. Kim: J. Am. Ceram. Soc., 1994, vol. 77, pp. 3137–41.

    Article  Google Scholar 

  20. Y. S. Kwon and K. T. Kim, ASME J. Eng. Mater. Technol., 1996, vol. 118, pp. 448–55.

    Article  Google Scholar 

  21. K. Darcovich, L. Bera, and K. Shinagawa, Mater. Sci. Eng., 2003, vol. A341, pp. 247–55.

    Article  Google Scholar 

  22. R.M. German: Sintering Theory and Practice, 1996, Wiley, New York.

    Google Scholar 

  23. S.J. L. Kang and Y.I. Jung: Acta Mater., 2004, vol. 52, pp. 4573–8.

    Article  Google Scholar 

  24. Y. S. Kwon, Y. Wu, P. Suri, and R.M. German: Metall. Mater. Trans., 2004, vol. 35A, pp. 257–63.

    Article  Google Scholar 

  25. E. A. Olevsky, V. Tikare, and T. J. Garino: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1914–22.

    Article  Google Scholar 

  26. S. He and J. Ma: Mater. Sci. Eng., 2006, vol. A361, pp.1914–22.

    Google Scholar 

  27. M.W. Reiterer, K.G. Ewsuk, and J.G. Arguello: J. Am. Ceram. Soc., 2006, vol. 89, pp. 1930–35.

    Article  Google Scholar 

  28. H. Su and D. L. Johnson: J. Am. Ceram. Soc., 1996, vol. 79, pp. 3211–7.

    Article  Google Scholar 

  29. M.-H. Teng, Y.-C. Lai, and Y.-T. Chen: West. Pac. Earth Sc., 2002, vol. 2, pp. 171–80.

    Google Scholar 

  30. K. An and D. L. Johnson: J. Mater. Sci., 2002, vol. 37, pp. 4555–9.

    Article  Google Scholar 

  31. T. R. G. Kutty, K. B. Khan, P. V. Hegde, J. Banerjee, A. K. Sengupta, S. Majumdar, and H. S. Kamath: J. Nucl. Mater., 2004, vol. 327, pp. 211–9.

    Article  Google Scholar 

  32. K. G. Ewsuk, D. T. Ellerby, and C. B. DiAntonio: J. Am. Ceram. Soc., 2006, vol.89, pp. 2003–9.

    Article  Google Scholar 

  33. S. Kiani, J. Pan, and J. A. Yeomans: J. Am. Ceram. Soc., 2006, vol. 89, pp. 3393–6.

    Article  Google Scholar 

  34. D. C. Blaine, J. D. Gurosik, S. J. Park, D. F. Heaney, and R. M. German, Metall. Mater. Trans., 37A [3] 715–20 (2006).

    Article  Google Scholar 

  35. D. C. Blaine, S. J. Park, P. Suri, and R.M. German: Metall. Mater. Trans., 2006, vol. 37A, pp. 2827–35.

    Article  Google Scholar 

  36. S. J. Park, J. M. Martin, J. F. Guo, J. L. Johnson, and R. M. German: Metall. Mater. Trans., 2006, vol. 37A, pp. 2837–48.

    Article  Google Scholar 

  37. S. J. Park, J. M. Martin, J. F. Guo, J. L. Johnson, and R.M. German: Metall. Mater. Trans., 2006, vol. 37A, pp. 3337–43.

    Article  Google Scholar 

  38. P. Garg, S.-J. Park, and R. M. German: Int. J. Refract. Met. Hard Mater., 2007, vol. 25, pp. 16–24.

    Article  Google Scholar 

  39. S. J. Park and R. M. German: Int. J. Mater. Struct. Integr., 2007, vol.1, pp. 128–47.

    Article  Google Scholar 

  40. D. Li, S. Chen, W. Shao, X. Ge, Y. Zhang, and S. Zhang: Mater. Lett., 2008, vol. 62, pp. 849–51.

    Article  Google Scholar 

  41. S.J. Park, S.H. Chung, J.M. Martín, J.L. Johnson, and R. M. German: Metall. Mater. Trans., 2008, vol. 39A, pp. 2941–2948.

    Article  Google Scholar 

  42. R.M. German, P. Suri, S.J. Park: J. Mater. Sci., 2009, vol. 44, pp. 1-39

    Article  Google Scholar 

  43. R. Bollina S.J. Park and R.M. German: Powder Metall., 2010, vol. 53, pp. 20-26.

    Article  Google Scholar 

  44. J. W. Newkirk, J. A. Sago and G. M. Brasel: Processing and Fabrication of Advanced Materials, 1998, The Minerals, Metals and Materials Society, Warrendale, PA, 213

    Google Scholar 

  45. H. Kyogoku, S. Komatsu, H. Nakayama, H. Jinushi and K. Shinohara: Advances in Powder Metallurgy and Particulate Materials, vol. 3. Metal Powder Industries Federation, Princeton, NJ, 1997, p. 18.

    Google Scholar 

  46. K. A. Green: Advances in Powder Metallurgy and Particulate Materials, vol. 2. Metal Powder Industries Federation, Princeton, New Jersey, 1998, p. 5.

    Google Scholar 

  47. Y. Wu, D Blaine, B. Marx, C. Schlaefer, and R.M. German: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2185-2194

    Article  Google Scholar 

  48. D. Peckner and I.M. Bernstein: Handbook of Stainless Steels, 1977, Mc Graw-Hill, USA.

  49. D. Blaine, S. J. Park, and R.M. German: J. Amer. Cer. Soc.,2009, vol. 92, pp. 1403-1409.

    Article  Google Scholar 

  50. P.C. Angelo, R. Subramanian: Powder Metallurgy: Science, Technology and Applications, vol. 10. Prentice-Hall of India Pvt Ltd, New Delhi, 2008, pp. 228-229

    Google Scholar 

  51. A S Sharma et al. Materials and Metallurgical Transactions A, 42(7), 2011, pp. 2071-2084

    Google Scholar 

  52. A.S. Sharma, J.Material Research, 28 (11), 2013, pp. 1517-1528

    Article  Google Scholar 

  53. G.B. Raju et al, Scr. Mater., 61 (7), 2009, pp. 674-677

    Article  Google Scholar 

  54. G.B. Raju et al, Scripta Materialia, 61 (1), 2009, pp. 104-107

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (NRF-2010-0026242/2011-0030075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sangyul Ha or Seong Jin Park.

Additional information

Manuscript submitted June 10, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, I.D., Ha, S., Park, S.J. et al. Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel. Metall Mater Trans A 47, 5548–5556 (2016). https://doi.org/10.1007/s11661-016-3687-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3687-0

Keywords

Navigation