Skip to main content
Log in

Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study focused on the surface integrity issues associated with broaching of Inconel 718 and the structural stability of the broached specimen at high temperatures, mainly involving the microstructural changes and residual stress relaxation. The broaching operation was performed using similar cutting conditions as that used in turbo machinery industries for machining fir-tree root fixings on turbine disks. Thermal exposure was conducted at 723 K, 823 K, and 923 K (450 °C, 550 °C, and 650 °C) for 30, 300, and 3000 hours, respectively. Surface cavities and debris dragging, sub-surface cracks, high intensity of plastic deformation, as well as the generation of tensile residual stresses were identified to be the main issues in surface integrity for the broached Inconel 718. When a subsequent heating was applied, surface recrystallization and α-Cr precipitation occurred beneath the broached surface depending on the applied temperature and exposure time. The plastic deformation induced by the broaching is responsible for these microstructural changes. The surface tension was completely relaxed in a short time at the temperature where surface recrystallization occurred. The tensile layer on the sub-surface, however, exhibited a much higher resistance to the stress relief annealing. Oxidation is inevitable at high temperatures. The study found that the surface recrystallization could promote the local Cr diffusion on the broached surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. D.F. Paulonis, J.M. Oblak, and D.S. Duvall: Trans. Quart. ASM, 1969, vol. 62, pp. 611-622.

    Google Scholar 

  2. J.W. Brooks and P.J. Bridges: Superalloys, pp. 33-42, TMS, Warrendale, 1988.

    Google Scholar 

  3. A. Oradei-Basile and J. F. Radavich: Superalloys 718, 625 and Various Derivatives, pp. 325-335, TMS, Warrendale, 1991.

    Book  Google Scholar 

  4. X. Xie, G. Wang, J. Dong, C. Wu, J. Radavich, G. Shen, and B.A. Lindsley: Superalloys 718, 625 and Various Derivatives, pp. 399-410, TMS, Warrendale, 2001.

    Book  Google Scholar 

  5. L. Jian, C.Y. Yuh, and M. Farooque: Corros. Sci., 2000, vol. 42, pp. 1573-1585.

    Article  Google Scholar 

  6. L. Geng, Y. Na, and N. Park: Mater. Des., 2007, vol. 28, pp. 978-981.

    Article  Google Scholar 

  7. G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505-521.

    Article  Google Scholar 

  8. D. Ulutan and T. Ozel: Int. J. Mach. Tools Manuf., 2011, vol. 51, pp. 250-280.

    Article  Google Scholar 

  9. E.O. Ezugwu, Z.M. Wang, and C.L. Okeke: Tribol. Trans., 1999, vol. 42, pp. 353-360.

    Article  Google Scholar 

  10. V. Bushlya, J.M. Zhou, F. Lenrick, P. Avdovic, and J.E. Ståhl: Procedia Engineering, 2011, vol. 19, pp. 60-66.

    Article  Google Scholar 

  11. M. Imran, P.T. Mativenga, A. Gholinia, and P.J. Withers: Int. J. Adv. Manuf. Technol., 2011, vol. 55, pp. 465-476.

    Article  Google Scholar 

  12. A.M. Wusatowska-Sarnek, B. Dubiel, A. Czyrska-Filemonowicz, P.R. Bhowal, N.B. Salah, and J.E. Klemberg-Sapieha: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3813-3825.

    Article  Google Scholar 

  13. R.L. Peng, J.M. Zhou, S. Johansson, A. Bellinius, V. Bushlya, and J.E. Ståhl: HTM Journal of Heat Treatment and Materials, 2014, vol. 69, pp. 46-53.

    Article  Google Scholar 

  14. A.R.C. Sharman, J.I. Hughes, and K. Ridgway: J. Mater. Process. Technol., 2006, vol. 173, pp. 359-367.

    Article  Google Scholar 

  15. A.R.C. Sharman, J.I. Hughes, and K. Ridgway: J. Mater. Process. Technol., 2015, vol. 216, pp. 123-132.

    Article  Google Scholar 

  16. L. Witek: Eng. Failure Anal., 2006, vol. 13, pp. 9-17.

    Article  Google Scholar 

  17. S.P. Mo, D.A. Axinte, T.H. Hyde, and N.N.Z. Gindy: J. Mater. Process. Technol., 2005, vol. 160, pp. 382-389.

    Article  Google Scholar 

  18. S. Gierlings and M. Brockmann: Advanced Materials Research, 2013, vol. 769, pp. 139-146.

    Article  Google Scholar 

  19. D.A. Axinte and N. Gindy: Wear, 2003, vol. 254, pp. 370-382.

    Article  Google Scholar 

  20. N.F. Suchkov and V.N. Latyshev: Machines Tooling, 1973, vol. 44, pp. 49-50.

    Google Scholar 

  21. D. Axinte: Int. J. Mach. Tools Manuf., 2007, vol. 47, pp. 2182-2188.

    Article  Google Scholar 

  22. V. Sajeev, L. Vijayaraghavan, and U.R.K. Rao: Int. J. Mech. Eng. Educ., 2000, vol. 28, pp. 88-92.

    Article  Google Scholar 

  23. F. Klocke, P. Vogtel, S. Gierlings, D. Lung, and D. Veselovac: Prod. Eng., 2013, vol. 7, pp. 593-600.

    Article  Google Scholar 

  24. R.J. Kamaladasa and Y.N. Picard: Microscopy, 2010, pp. 1583–90.

  25. I.C. Noyan and J.B. Cohen: Residual stress measurement by diffraction and interpretation, pp. 117-130, Springer-Verlag New York Inc., New York, 1986.

    Google Scholar 

  26. J.A. Bailey: Wear, 1977, vol. 42, pp. 297-303.

    Article  Google Scholar 

  27. M.C. Shaw: Metal Cutting Principles, pp. 432-479, Oxford University Press, New York, 2005.

    Google Scholar 

  28. B.J. Griffiths: J. Tribol., 1987, vol. 109, pp. 525-530.

    Article  Google Scholar 

  29. J.M. Zhou, V. Bushlya, R.L. Peng, and J.E. Ståhl: Appl. Mech. Mater., 2012, vol. 117, pp. 1681-1688.

    Google Scholar 

  30. J. Barry and G. Byrne: Mater. Sci. Eng. A, 2002, vol. 325, pp. 356-364.

    Article  Google Scholar 

  31. K. Jacobus, R.E. DeVor, and S.G. Kapoor: J. Manuf. Sci. Eng., 2000, vol. 122, pp. 20-31.

    Article  Google Scholar 

  32. P.S. Prevéy: Residual Stress in Design, Process and Materials Selections, pp. 11-19, ASM Metals Park, OH, 1987.

    Google Scholar 

  33. N.A. Abukhshim, P.T. Mativenga, and M.A. Sheikh: Int. J. Mach. Tools Manuf., 2006, vol. 46, pp. 782-800.

    Article  Google Scholar 

  34. L.M. Clarebrough, M.E. Hargreaves, and G.W. West: Proceedings of the Royal Society of London, Series A, Mathematical and Physical and Engineering Sciences, 1955, vol. 232, pp. 252-270.

    Article  Google Scholar 

  35. O. Vöhringer: Advances in Surface Treatments, Technology-Applications-Effects, Pergamon Press, Oxford, 1987, vol. 4, pp. 367-396.

    Google Scholar 

  36. Z. Bi, J. Dong, M. Zhang, L. Zheng, and X. Xie: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 312-317.

    Article  Google Scholar 

  37. Z. Chen, R.L. Peng, P. Avdovic, J.M. Zhou, J. Moverare, F. Karlsson, and S. Johansson: MATEC Web of Conferences, vol. 14, no. 08002, pp. 1–6, EDP Sciences, 2014.

  38. J.F. Radavich: Superalloys 718, 625, 706 and Various Derivatives, pp. 409-415, TMS, 1997.

    Book  Google Scholar 

  39. X.J. Pang, D.J. Dwyer, M. Gao, P. Valerio, and R.P. Wei: Scr. Mater., 1994, vol. 31, pp. 345-350.

    Article  Google Scholar 

  40. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scr. Mater., 1995, vol. 33, pp. 1387-1392.

    Article  Google Scholar 

  41. D. Farkas: J. Phys. Condens. Matter, 2000, vol. 12, pp. R497.

    Article  Google Scholar 

  42. T.K. Hirsch, A.D.S. Rocha, F.D. Ramos, and T.R. Strohaecker: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3523-3530.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Annethe Billenius from Linköping University, for the help with the laboratory work, Agora Materiae, Faculty Grant SFO-MAT-LiU#2009-00971 at Linköping University, Siemens Industrial Turbomachinery AB for their valuable supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Chen.

Additional information

Manuscript submitted May 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Peng, R.L., Moverare, J. et al. Surface Integrity and Structural Stability of Broached Inconel 718 at High Temperatures. Metall Mater Trans A 47, 3664–3676 (2016). https://doi.org/10.1007/s11661-016-3515-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3515-6

Keywords

Navigation