Skip to main content
Log in

Residual stress-affected diffusion during plasma nitriding of tool steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plasma nitriding of tool materials is common practice to improve the wear resistance and lifetime of tools. Machining-induced compressive residual stresses in shallow layers of some tenths of microns are observed accompanied by other characteristic properties of machined surfaces in these high-strength materials. After plasma nitriding of M2 high-speed steel, previously induced compressive residual stresses remain stable and the depth of diffusion layers decreases with increasing compressive residual stresses. This article reports investigations of plasma nitrided samples with different levels of residual stresses induced prior to the nitriding process. For comparison, experiments with bending load stresses during plasma nitriding have also been carried out. The plasma nitriding treatment was performed at constant temperature of 500 °C with a gas mixture of 5 vol pct N2 in hydrogen. Nitriding time was varied from 30 to 120 minutes. All samples were characterized before and after plasma nitriding concerning microstructure, roughness, microhardness, chemical composition, and residual stress states. Experimental results are compared with analytical calculations on (residual) stress effects in diffusion and show a clear effect of residual and load stresses in the diffusion of nitrogen in a high-strength M2 tool steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Davis: ASM Handbook, 10th ed., ASM, Metals Park, OH, 1991, vol. 4, pp. 420–24.

    Google Scholar 

  2. R. Grün and H.J. Günther: Mater. Sci. Eng., 1991, vol. A140, pp. 435–41.

    Google Scholar 

  3. B. Edenhofer and T.J. Bewley: Heat Treatment, 1976, vol. 9, pp. 7–13.

    Google Scholar 

  4. D. Günther, T. Hirsch, F. Hoffmann, and P. Mayr: Härterei-Technische Mitteilungen, 1998, vol. 53, pp. 203–10.

    Google Scholar 

  5. A. da Silva Rocha, T.R. Strohaecker, V. Tomala, and T. Hirsch: Surface Coatings Technol., 1999, vol. 115, pp. 24–31.

    Article  Google Scholar 

  6. A. da Silva Rocha, T.R. Strohaecker, and T. Hirsch: Surface Coatings Technol., 2003, vol. 165, pp. 176–85.

    Article  Google Scholar 

  7. S.R. Bradbury, D.B. Lewis, and M. Sarwar: Surface Coatings Technol., 1996, vol. 85, pp. 215–20.

    Article  CAS  Google Scholar 

  8. D.B. Lewis, S.R. Bradbury, and M. Sarwar: Surface Coatings Technol., 1996, vol. 82, pp. 187–92.

    Article  CAS  Google Scholar 

  9. E.J. Mittemeijer and M.A.J. Somers: Härterei Technische Mitteilungen, 1992, vol. 47, pp.175–82.

    Google Scholar 

  10. H. Oettel and G. Schreiber: AWT-Tagungsband “Nitrieren und Nitrocarburieren,” AWT, Wiesbaden, Germany, 1991, pp. 139–51.

    Google Scholar 

  11. U. Kreft, F. Hoffmann, T. Hirsch, and P. Mayr: in Surface Modification Technologies VIII, T.S. Sudarshan and M. Jeandin, The Institute of Materials, London, 1995, pp. 148–60.

    Google Scholar 

  12. D. Günther, F. Hoffmann, and T. Hirsch: Härterei-Technische Mitteilungen, 2003, vol. 58, pp. 64–73.

    Google Scholar 

  13. J.F. Gu, D.H. Bei, J.S. Pan, J. Lu, and K. Lu: Mater. Lett., 2002, vol. 55, pp. 340–43.

    Article  CAS  Google Scholar 

  14. H. Ferkel, M. Glatzer, Y. Estrin, and R.Z. Valiev: Scripta Mater., 2002, vol. 46, pp. 623–28.

    Article  CAS  Google Scholar 

  15. F. Hoffmann: Ph.D. Thesis, University of Bremen, Bremen, Germany.

  16. R.E. Smallman: Modern Physical Metallurgy, 2nd ed., Butterworth and Co., London 1963, pp. 111–12.

    Google Scholar 

  17. R.E. Reed-Hill: Physical Metallurgy Principles, 2nd ed., PWS-Kent Publ. Co., Boston, MA, 1992, pp. 433–42.

    Google Scholar 

  18. P.M. Unterweiser: Heat Treaters Guide: Practices and Procedures for Irons and Steels, 2nd ed. ASM, Metals Park, OH, 1989, p. 904.

    Google Scholar 

  19. F. Dornelles Ramos: Master’s Thesis, UFRGS, Porto Alegre, Brazil, 2003.

    Google Scholar 

  20. E. Rose and P. Mayr: Mikrochim. Acta, 1989, vol. I, pp. 197–212.

    Article  Google Scholar 

  21. Z. Weiss and K. Marshall: Thin Solid Films, 1997, vols. 308–309, pp. 382–88.

    Article  Google Scholar 

  22. V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods: Evaluation, Application, Assessment, Elsevier, Amsterdam, 1997, pp. 388–92.

    Google Scholar 

  23. H.C.F. Rozendaal: Ph.D. Thesis, University of Delft, Delft, The Netherlands, 1985.

    Google Scholar 

  24. S. Mridha and D. Jack: Met. Sci., 1982, vol. 16, pp. S.398-S.404.

    Google Scholar 

  25. D. Scott: Treatise on Materials Science and Technology, vol. 13, Wear, Academic Press, New York, NY, 1979, pp. 449–51.

    Google Scholar 

  26. J. Philibert: Les Editions de Physique, Les Ulis, Cedex A, France, 1991, p. 110.

    Google Scholar 

  27. A. Köthe and F. Schlät: Diffusion in Metallischen Werkstoffen, VEB Verlag, Leipzig, 1970, p. 116.

    Google Scholar 

  28. C.G. Homan and J.F. Cox: in Physics and Solids at High Compressives, C.T. Tomizuka and R.M. Emrick, eds., Academic Press, London, 1965, pp. 374–77.

    Google Scholar 

  29. A. Gude, K. Freitag, B. Sepiol, G. Vogl, and H. Mehrer: Physica Status Solidi B-Basic Res., 1996, vol. 197, pp. 299–307.

    CAS  Google Scholar 

  30. J.K. Baria, P.N. Gajjar, and A.R. Jani: on-line paper 20, Sept. 2003, via http://fizika.hfd.hr/fizika a/av03/a12p023.pdf

  31. L.S. Dubrovinsky, S.K. Saxena, N.D. Dubrovinskaia, and T. LeBihan: Am. Mineralogist, 2000, vol. 85, pp. 386–89.

    CAS  Google Scholar 

  32. H. Klümper-Westkamp: Ph.D. Thesis, University of Bremen, Bremen, Germany, 1989.

    Google Scholar 

  33. P.J. Wilbur, J.A. Davis, R. Wie, J.J. Vaja, and D.L. Williamson: Surface Coatings Technol., 1996, vol. 83, pp. 250–56.

    Article  CAS  Google Scholar 

  34. R. Trejo-Luna, L. Cota, L. Martinez, L. Morales, and J. Richards: Scripta Metall., 1985, vol. 19, pp. 1297–1300.

    Article  CAS  Google Scholar 

  35. E.J. Mittemeijer: Härterei Technische Mitteilungen, 1981, vol. 36, pp. 45–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, T.K., Rocha, A.D.S., Ramos, F.D. et al. Residual stress-affected diffusion during plasma nitriding of tool steels. Metall Mater Trans A 35, 3523–3530 (2004). https://doi.org/10.1007/s11661-004-0189-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0189-2

Keywords

Navigation