Skip to main content
Log in

Quantitatively Analyzing Strength Contribution vs Grain Boundary Scale Relation in Pure Titanium Subjected to Severe Plastic Deformation

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electron backscatter diffraction was used to reveal high- and low-angle grain boundaries (HAGBs, with misorientation ≥15 deg, and LAGBs, <15 deg) in pure titanium (ASTM grade 2) subjected to equal channel angular pressing. Comprehensive paradigms were developed to present relations of yield strength vs HAGB grain diameter, and LAGB contribution vs LAGB linear intercept. Incorporating grain orientations (against loading axis) into the Hall–Petch relation, we quantitatively investigated the strength contributions by HAGBs and LAGBs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. G. Lütjering and J.C. Williams: Titanium, Springer, Berlin, 2003.

    Book  Google Scholar 

  2. Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, S.S. Gireesh, S. Armada, P.C. Skaret, and H.J. Roven: Scripta Mater., 2011, vol. 64, pp. 904-07.

    Article  Google Scholar 

  3. M.-C. Zhao, F. Yin, T. Hanamura, K. Nagai, and A. Atrens: Scripta Mater., 2007, vol.57, pp.857-60.

    Article  Google Scholar 

  4. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833-54.

    Article  Google Scholar 

  5. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scripta Mater., 2012, vol. 66, pp. 785-88.

    Article  Google Scholar 

  6. T.H. Courtney: Mechanical Behavior of Materials, 2nd ed., Boston, McGraw-Hill, 2000.

    Google Scholar 

  7. G. Purcek, G.G. Yapici, I. Karaman, and H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2303-08.

    Article  Google Scholar 

  8. D.-H. Kang and T.-W. Kim: Mater. Des., 2010, vol. 31, pp. S54-S60.

    Article  Google Scholar 

  9. D. Jia, Y.M. Wang, K.T. Ramesh, and E. Ma: Appl. Phys. Lett., 2001, vol. 79, pp. 611-13.

    Article  Google Scholar 

  10. V.S. Zhernakov, V.V. Latysh, V.V. Stolyarov, A.I. Zharikov, and R.Z. Valiev: Scripta Mater. 2001, vol. 44, pp. 1771-74.

    Article  Google Scholar 

  11. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2003, vol. 343, pp. 43-50.

    Article  Google Scholar 

  12. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59-67.

    Article  Google Scholar 

  13. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng. A, 2001, vol. 303, pp. 82-89.

    Article  Google Scholar 

  14. V.V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer: Mater. Sci. Eng. A, 2008, vol. 476, pp. 98-105.

    Article  Google Scholar 

  15. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Nanostruct. Mater., 1999, vol. 11, pp. 947-54.

    Article  Google Scholar 

  16. V.L. Sordi, M. Ferrante, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7870-76.

    Article  Google Scholar 

  17. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, and R.Z. Valiev: J. Mater. Res., 2003, vol. 18, pp. 1908-17.

    Article  Google Scholar 

  18. Y.T. Zhu, Y.R. Kolobov, G.P. Grabovetskaya, V.V. Stolyarov, N.V. Girsova, and R.Z. Valiev: J. Mater. Res., 2003, vol. 18, pp. 1011-16.

    Article  Google Scholar 

  19. Y.T. Zhu and T.C. Lowe: MRS Bull., 2000, vol. 25, pp. 13-14.

    Google Scholar 

  20. X. Zhao, W. Fu, X. Yang, and T.G. Langdon: Scripta Mater., 2008, vol. 59, pp. 542-45.

    Article  Google Scholar 

  21. Y. Estrin, H.-E. Kim, R. Lapovok, H.P. Ng, and J.-H. Jo: BioMed. Res. Int., 2013, doi:10.1155/2013/914764.

    Google Scholar 

  22. R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee: Scripta Mater., 2003, vol. 49, pp. 669-74.

    Article  Google Scholar 

  23. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scripta Mater., 2001, vol. 45, pp. 747-52.

    Article  Google Scholar 

  24. D. Terada, S. Inoue, and N. Tsuji: J. Mater. Sci., 2007, vol. 42, pp. 1673-81.

    Article  Google Scholar 

  25. J.L. Milner, F. Abu-Farha, C. Bunget, T. Kurfess, and V.H. Hammond: Mater. Sci. Eng. A, 2013, vol. 561, pp. 109-17.

    Article  Google Scholar 

  26. Z. Li, L. Fu, B. Fu, and A. Shan: Mater. Sci. Eng. A, 2012, vol. 558, pp. 309-18.

    Article  Google Scholar 

  27. W.J. Kim, S.J. Yoo, and J.B. Lee: Scripta Mater. 2010, vol. 62, pp. 451-54.

    Article  Google Scholar 

  28. S.H. Ahn, Y.B. Chun, S.H. Yu, K.H. Kim, and S.K. Hwang: Mater. Sci. Eng. A, 2010, vol. 528, pp. 165-71.

    Article  Google Scholar 

  29. D.K. Yang, P.D. Hodgson, and C.E. Wen: Scripta Mater. 2010, vol. 63, pp. 941-44.

    Article  Google Scholar 

  30. R.L. Jones and H. Conrad: Trans. Metall. Soc. A.I.M.E. 1969, vol. 245, pp. 779-89.

    Google Scholar 

  31. A.A. Popov, I.-Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeye, and R.Z. Valiev: Scripta Mater., 1997, vol. 37, pp. 1089-94

    Article  Google Scholar 

  32. V.A. Moskalenko and A.R. Smirnov: Mater. Sci. Eng. A, 1998, vol. 246, pp. 282-88.

    Article  Google Scholar 

  33. Y.G. Ko, D.H. Shin, K.-T. Park, and C.S. Lee: Scripta Mater., 2006, vol. 54, pp. 1785-89.

    Article  Google Scholar 

  34. W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, and K.J. Kurzydlowski: J. Mater. Proc. Tech., 2008, vol. 205, pp. 173-82.

    Article  Google Scholar 

  35. B. Sun, S. Li, H. Imai, T. Mimoto, J. Umeda, and K. Kondoh: Mater. Sci. Eng. A, 2013, vol. 563, pp. 95-100.

    Article  Google Scholar 

  36. H.-H. Fu, D.J. Benson, and M.A. Meyers: Acta Mater., 2001, vol. 49, pp. 2567-82.

    Article  Google Scholar 

  37. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge, Cambridge University Press, 2009.

    Google Scholar 

  38. K. Okazaki and H. Conrad: Acta Metall., 1973, vol. 21, pp. 1117-29.

    Article  Google Scholar 

  39. N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827-36.

    Article  Google Scholar 

  40. G. Sambasiva Rao and Y.V.R.K. Prasad: Metall. Trans. A, 1982, vol. 13A, pp. 2219-26.

    Google Scholar 

  41. R. Armstrong: Acta. Metall. A, 1968, vol. 16, pp. 347-355.

    Article  Google Scholar 

  42. R.W. Armstrong: Acta Mech., 2014, vol. 225, pp. 1013-28.

    Article  Google Scholar 

  43. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Philos. Mags. A, 1962, vol. 7, pp. 45-58.

    Article  Google Scholar 

  44. W. Yuan, S.K. Panigrahi, J.-Q. Su and R.S. Mishra: Scripta Mater., 2011, vol. 65, pp. 994-97.

    Article  Google Scholar 

  45. B.S. Fromm, B.L. Adams, S. Ahmadi, and M. Knezevic: Acta Mater., 2009, vol. 57, pp. 2339-48.

    Article  Google Scholar 

  46. Z. Zeng, Y. Zhang, and S. Jonsson: Mater. Sci. Eng. A, 2009, vol. 513-514, pp. 83-90.

    Article  Google Scholar 

  47. A.M. Russell and K.L. Lee: Structure-Property Relationships in Nonferrous Metals, Wiley, Hoboken, NJ, 2005.

    Book  Google Scholar 

  48. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.

    Google Scholar 

Download references

This study was supported by the Defence Materials Technology Centre (DMTC). The authors gratefully acknowledge the support of EBSD by Shanghai Jiaotong University. Our thanks are due to K. Xia and D.T. McDonald at the University of Melbourne and S.M. Zhu from Monash University for access to laboratory facilities and assistance with EBSD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo.

Additional information

Manuscript submitted April 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Hu, Q. & Wu, X. Quantitatively Analyzing Strength Contribution vs Grain Boundary Scale Relation in Pure Titanium Subjected to Severe Plastic Deformation. Metall Mater Trans A 47, 1922–1928 (2016). https://doi.org/10.1007/s11661-016-3391-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3391-0

Keywords

Navigation