Skip to main content

Advertisement

Log in

Development and Kinetics of TiB2 Layers on the Surface of Titanium Alloy by Superplastic Boronizing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this work is to explore the possibility of combining boronizing and superplastic deformation on titanium alloy (Ti6Al4V) substrate. Superplastic boronizing (SPB) is carried out at three different temperatures of 1173 K, 1223 K, and 1273 K (900 °C, 950 °C, and 1000 °C), and it is held for four different boronizing times of 1, 2, 3, and 6 hours. TiB2 is the only boride compound identified after the boronizing process. Boronized layer thickness in the range of 44.9 ± 1.1 to 149 ± 1 μm is formed on the surface of Ti6Al4V and the surface hardness values increase with respect of the formation’s degree of the hard boronized layer. Diffusion coefficient values attained for all temperatures are (1.44 ± 0.8) × 10−13, (4.1 ± 1.5) × 10−13, and (8.86 ± 4.1) × 10−13 m2 s−1, respectively and the values are higher as compared to other works referred. The activation energy obtained for this process is 226.17 ± 8.3 kJ mol−1. The results obtained suggest that the SPB process provides a more competent and efficient process for the formation of a boronized layer on the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] T.S.R.C. Murthy, J.K. Sonber, C. Subramanian, R.C. Hubli, N. Krishnamurthy, A.K. Suri, International Journal of Refractory Metals and Hard Materials, 36 (2013) 243-253.

    Article  Google Scholar 

  2. [2] G. Zhao, C. Huang, H. Liu, B. Zou, H. Zhu, J. Wang, International Journal of Refractory Metals and Hard Materials, 42 (2014) 36-41.

    Article  Google Scholar 

  3. [3] R.G. Munro, Journal of Research of the National Institute of Standards and Technology, 105 (2000) 709-720.

    Article  Google Scholar 

  4. [4] S.K. Bhaumik, C. Divakar, A.K. Singh, G.S. Upadhyaya, Materials Science and Engineering: A, 279 (2000) 275-281.

    Article  Google Scholar 

  5. [5] E. Atar, E.S. Kayali, H. Cimenoglu, Surface and Coatings Technology, 202 (2008) 4583-4590.

    Article  Google Scholar 

  6. [6] F. Li, X. Yi, J. Zhang, Z. Fan, D. Gong, Z. Xi, Acta Metallurgica Sinica (English Letter), 23 (2010) 293-300.

    Google Scholar 

  7. [7] S.A. Tsipas, M.R. Vázquez-Alcázar, E.M.R. Navas, E. Gordo, Surface and Coatings Technology, 205 (2010) 2340-2347.

    Article  Google Scholar 

  8. [8] N.M. Tikekar, K.S. Ravi Chandran, A. Sanders, Scripta Materialia, 57 (2007) 273-276.

    Article  Google Scholar 

  9. [9] B. Sarma, N.M. Tikekar, K.S. Ravi Chandran, Ceramics International, 38 (2012) 6795-6805.

    Article  Google Scholar 

  10. B. Sarma: Ph.D. Dissertation, University of Utah, 2011.

  11. [11] I. Jauhari, H.A.M. Yusof, R. Saidan, Materials Science and Engineering: A, 528 (2011) 8106-8110.

    Article  Google Scholar 

  12. [12] R. Hasan, I. Jauhari, H. Ogiyama, R.D. Ramdan, Key Engineering Materials, 326-328 (2006) 1233-1236.

    Article  Google Scholar 

  13. [13] M. Matsushita, Materials, 4 (2011) 1309.

    Article  Google Scholar 

  14. [14] N. Ahamad, I. Jauhari, Metall and Mat Trans A, 43 (2012) 5115-5121.

    Article  Google Scholar 

  15. [15] C.H. Xu, J.K. Xi, W. Gao, Scripta Materialia, 34 (1996) 455-461.

    Article  Google Scholar 

  16. M.C. Chaturvedi, Welding and Joining of Aerospace Materials, Elsevier Science, London, 2011.

    Google Scholar 

  17. W. Han, K. Zhang, G. Wang, and X. Zhang: J. Mater. Sci. Technol., 2005, vol. 21, pp. 60–62.

  18. [18] I. Jauhari, H. Ogiyama, H. Tsukuda, Journal of the Society of Materials Science, Japan, 52 (2003) 154-159.

    Article  Google Scholar 

  19. [19] H.A.M. Yusof, I. Jauhari, S. Rozali, O. Hiroyuki, Key Engineering Materials, 345-346 (2007) 601-604.

    Article  Google Scholar 

  20. [20] S.A.A. Azis, I. Jauhari, N.R.N. Masdek, N.W. Ahamad, H. Ogiyama, Defect and Diffusion Forum, 297-301 (2010) 227-232.

    Article  Google Scholar 

  21. A.N. Natali, Dental Biomechanics, CRC Press, Boca Raton, 2003.

    Book  Google Scholar 

  22. M.J. Donachie, Titanium: A Technical Guide, 2nd Edition, ASM International, Materials Park, 2000.

    Google Scholar 

  23. H.K.D.H. Bhadeshia, Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road, Cambridge CB3 0FS, U.K., 2013.

Download references

Acknowledgments

This research work is financed by the Postgraduate Research Fund, University of Malaya (Project No. PG113-2012B) and University of Malaya Research Grant (UMRG) (Project No. RP003B-13AET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iswadi Jauhari.

Additional information

Manuscript submitted June 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taazim, N.T., Jauhari, I., Miyashita, Y. et al. Development and Kinetics of TiB2 Layers on the Surface of Titanium Alloy by Superplastic Boronizing. Metall Mater Trans A 47, 2217–2222 (2016). https://doi.org/10.1007/s11661-016-3359-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3359-0

Keywords

Navigation