Skip to main content
Log in

Influence of boron nitride on reinforcement to improve high temperature oxidation resistance of titanium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Influence of boron nitride (BN) addition in commercially pure titanium (Cp-Ti) was characterized for their microstructural variation, hardness, and oxidation kinetics. Feedstock powders, Cp-Ti with 3 wt% BN (3BN) and 6 wt% BN (6BN), were prepared by roller mill followed by additive manufacturing using laser engineered net shaping (LENS™). Rate of oxidation was measured from thermogravimetric analysis (TGA) at 1000 °C for 50 h. Average instantaneous parabolic constants (kp) for Cp-Ti, 3BN, and 6BN were 41.2 ± 12.0, 28.6 ± 2.8, and 18.2 ± 9.2 mg2/(cm4 h), respectively. Cp-Ti displayed acicular α-Ti microstructure. After TGA, large equiaxed grains along with TiO2 formation at the grain boundaries were observed, which increased the hardness. With BN addition, plate-like TiN and needle-like TiB secondary phases were also observed. Hardness for Cp-Ti, 3BN, and 6BN were 256.9 ± 7.7, 424.0 ± 33.6, and 548.3 ± 49.7 HV0.2, respectively. Overall, a small addition of BN was effective in improving the oxidation resistance of Cp-Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J. Dai, J. Zhu, C. Chen, and F. Weng High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. J. Alloys Compd. 685, 784–798 (2016).

    Article  CAS  Google Scholar 

  2. Z. Huda and P. Edi Materials selection in design of structures and engines of supersonic aircrafts: A review. Mater. Des. 46, 552–560 (2013).

    Article  CAS  Google Scholar 

  3. Y. Zhou, Q.Y. Zhang, J.Q. Liu, X.H. Cui, J.G. Mo, and S.Q. Wang Wear characteristics of a thermally oxidized and vacuum diffusion heat treated coating on Ti–6Al–4V alloy. Wear 344, 9–21 (2015).

    Article  CAS  Google Scholar 

  4. S. Wang, Z. Liao, Y. Liu, and W. Liu Influence of thermal oxidation temperature on the microstructural and tribological behavior of Ti6Al4V alloy. Surf. Coating. Technol. 240, 470–477 (2014).

    Article  CAS  Google Scholar 

  5. M. Peters, J. Kumpfert, C.H. Ward, and C. LeyensTitanium and Titanium Alloys (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  6. K. Aniołek The influence of thermal oxidation parameters on the growth of oxide layers on titanium. Vacuum 144, 94–100 (2017).

    Article  CAS  Google Scholar 

  7. A. Kanjer, L. Lavisse, V. Optasanu, P. Berger, C. Gorny, P. Peyre, F. Herbst, O. Heintz, N. Geoffroy, T. Montesin, and M.C. Marco de Lucas Effect of laser shock peening on the high temperature oxidation resistance of titanium. Surf. Coating. Technol. 326, 146–155 (2017).

    Article  CAS  Google Scholar 

  8. P. Kofstad, K. Hauffe, H. Kjöllesdal, P. Siekevitz, L. Ernster, and E. Diczfalusy Investigation on the oxidation mechanism of titanium. Acta Chem. Scand. 12, 239–266 (1958).

    Article  CAS  Google Scholar 

  9. D.K. Das and S.P. Trivedi Microstructure of diffusion aluminide coatings on Ti-base alloy IMI-834 and their cyclic oxidation behaviour at 650 °C. Mater. Sci. Eng., A 367, 225–233 (2004).

    Article  CAS  Google Scholar 

  10. A. Ebach-Stahl, C. Eilers, N. Laska, and R. Braun Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti–Al–Cr–Y coatings at 600 and 700 °C in air. Surf. Coat. Technol. 223, 24–31 (2013).

    Article  CAS  Google Scholar 

  11. A.K. Lal, S.K. Sinha, P.K. Barhai, K.G.M. Nair, S. Kalavathy, and D.C. Kothari Effect of 60 keV nitrogen ion implantation on oxidation resistance of IMI 834 titanium alloy. Surf. Coating. Technol. 203, 2605–2607 (2009).

    Article  CAS  Google Scholar 

  12. L. Raceanu, V. Optasanu, T. Montesin, G. Montay, and M. Francois Shot-peening of pre-oxidized plates of zirconium: Influence of residual stress on oxidation. Oxid. Met. 79, 135–145 (2013).

    Article  CAS  Google Scholar 

  13. V. Optasanu, P. Jacquinot, and T. Montesin Influence of the residual stresses induced by shot-peening on the oxidation of Zr plates. Adv. Mater. Res. 996, 912–917 (2014).

    Article  CAS  Google Scholar 

  14. T. Gualtieri and A. Bandyopadhyay Additive manufacturing of compositionally gradient metal-ceramic structures: Stainless steel to vanadium carbide. Mater. Des. 139, 419–428 (2017).

    Article  CAS  Google Scholar 

  15. T. Gualtieri and A. Bandyopadhyay Niobium carbide compostie coatings on SS304 using laser engineered net shaping (LENS™). Mater. Lett. 189, 89–92 (2017).

    Article  CAS  Google Scholar 

  16. K. Stenberg, S. Dittrick, S. Bose, and A. Bandyopadhyay Influence of simultaneous addition of carbon nanotubes and calcium phosphate on wear resistance of 3D Printed Ti6Al4V. J. Mater. Res. 33, 2077–2086 (2018).

    Article  CAS  Google Scholar 

  17. H. Sahasrabudhe and A. Bandyopadhyay Additive manufacturing of reactive in situ Zr based ultra-high temperature ceramic composites. J. Miner. Met. Mater. Soc. 68, 822–830 (2016).

    Article  CAS  Google Scholar 

  18. Y. Hu, F. Ning, H. Wang, W. Cong, and B. Zhao Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance. Opt. Laser Technol. 99, 174–183 (2018).

    Article  CAS  Google Scholar 

  19. M. Zadra and L. Girardini High-performance, low-cost titanium metal matrix composites. Mater. Sci. Eng., A 608, 155–163 (2014).

    Article  CAS  Google Scholar 

  20. Z.H. Ding, Z.H. Ding, B. Yao, L.X. Qiu, S.Z. Bai, X.Y. Guo, Y.F. Xue, W.R. Wang, X.D. Zhou, and W.H. Su Formation of titanium nitride by mechanical milling and isothermal annealing of titanium and boron nitride. J. Alloys Compd. 391, 77–81 (2005).

    Article  CAS  Google Scholar 

  21. H. Okamoto and H. BakerASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, OH, 1992).

  22. I. Barin and O. KnackeThermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin Heidelberg, 1973).

    Google Scholar 

  23. K. Panda and K. Ravi Chandran Synthesis of ductile titanium–titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties. Metall. Mater. Trans. A 34, 1371–1385 (2003).

    Article  Google Scholar 

  24. M.M.H. Bhuiyan, L.H. Li, J. Wang, P. Hodgson, and Y. Chen Interfacial reactions between titanium and boron nitride nanotubes. Scr. Mater. 127, 108–112 (2017).

    Article  CAS  Google Scholar 

  25. M. Ceramics, S.P. Gordienko, and T.M. Evtushok Reaction of titanium with boron nitride under self-propagating high-temperature synthesis conditions. Powder Metall. Met. Ceram. 40, 58–60 (2001).

    Article  Google Scholar 

  26. K.S.R. Chandran and K.B. Panda Titanium composites with TiB whiskers. Adv. Mater. Process. 160, 59–62 (2002).

    Google Scholar 

  27. B. Heer, H. Sahasrabudhe, A.K. Khanra, and A. Bandyopadhyay Boron nitride-reinforced SS316 composite: Influence of laser processing parameters on microstructure and wear resistance composites. J. Mater. Sci. 52, 10829–10839 (2017).

    Article  CAS  Google Scholar 

  28. Y. Zhang, H. Sahasrabudhe, and A. Bandyopadhyay Additive manufacturing of Ti–Si–N ceramic coatings on titanium. Appl. Surf. Sci. 346, 428–437 (2015).

    Article  CAS  Google Scholar 

  29. D.O. AlbinaTheory and Experience on Corrosion of Waterwall and Superheater Tubes of Was-to-Energy Facilities (Columbia University, New York, 2005).

    Google Scholar 

  30. P.R. RobergeHandbook of Corrosion Engineering (McGraw-Hill, New York, 2000).

    Google Scholar 

  31. P. Pérez, J.L. González-Carrasco, and P. Adeva Influence of powder particle size on the oxidation behavior of a PM Ni3Al alloy. Oxid. Met. 49, 485–507 (1998).

    Article  Google Scholar 

  32. M.W. Brumm and H.J. Grabke The oxidation behaviour of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys. Corros. Sci. 33, 1677–1690 (1992).

    Article  CAS  Google Scholar 

  33. M. Binnewies and E. MilkeThermochemical Data of Elements and Compounds (Wiley-VCH Verlag GmbH, Weinheim, New York, 2002).

    Book  Google Scholar 

  34. H. Sahasrabudhe, R. Harrison, C. Carpenter, and A. Bandyopadhyay Stainless steel to titanium bimetallic structure using LENS. Addit. Manuf. 5, 1–8 (2015).

    CAS  Google Scholar 

  35. V.K. Balla, W. Xue, S. Bose, and A. Bandyopadhyay Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomater. 4, 697–706 (2008).

    Article  CAS  Google Scholar 

  36. M. Das, K. Bhattacharya, S.A. Dittrick, C. Mandal, V.K. Balla, T.S. Sampath Kumar, A. Bandyopadhyay, and I. Manna In situ synthesized TiB-TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. J. Mech. Behav. Biomed. Mater. 29, 259–271 (2014).

    Article  CAS  Google Scholar 

  37. E. Chikarakara, S. Naher, and D. Brabazon High speed laser surface modification of Ti–6Al–4V. Surf. Coating. Technol. 206, 3223–3229 (2012).

    Article  CAS  Google Scholar 

  38. H. Sahasrabudhe, J. Soderlind, and A. Bandyopadhyay Laser processing of in situ TiN/Ti composite coating on titanium. J. Mech. Behav. Biomed. Mater. 53, 239–249 (2016).

    Article  CAS  Google Scholar 

  39. W. Xiang, M. Xuliang, L. Xinlin, D. Lihua, and W. Mingjia Effect of boron addition on microstructure and mechanical properties of TiC/Ti6Al4V composites. Mater. Des. 36, 41–46 (2012).

    Article  CAS  Google Scholar 

  40. G. Matache, D.M. Stefanescu, C. Puscasu, and E. Alexandrescu Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy. Int. J. Cast Met. Res. 29, 303–316 (2016).

    Article  CAS  Google Scholar 

  41. H. Attar, S. Ehtemam-Haghighi, D. Kent, X. Wu, and M.S. Dargusch Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Mater. Sci. Eng., A 705, 385–393 (2017).

    Article  CAS  Google Scholar 

  42. M. Das, V.K. Balla, D. Basu, T.S. Sampath Kumar, and A. Bandyopadhyay Laser processing of in situ synthesized TiB-TiN-reinforced Ti6Al4V alloy coatings. Scr. Mater. 66, 578–581 (2012).

    Article  CAS  Google Scholar 

  43. H. Feng, Y. Zhou, D. Jia, Q. Meng, and J. Rao Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Cryst. Growth Des. 6, 1626–1630 (2006).

    Article  CAS  Google Scholar 

  44. B. Kooi, Y. Pei, and J. De Hosson The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Mater. 51, 831–845 (2003).

    Article  CAS  Google Scholar 

  45. K. Ravi Chandran, K. Panda, and S. Sahay TiBw-reinforced Ti composites: Processing, properties, application prospects, and research needs. J. Miner. Met. Mater. Soc. 56, 42–48 (2004).

    Article  CAS  Google Scholar 

  46. L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, and H.X. Peng In situ TiBw/Ti–6Al–4V composites with novel reinforcement architecture fabricated by reaction hot pressing. Scr. Mater. 60, 996–999 (2009).

    Article  CAS  Google Scholar 

  47. N.C. Saha and H.G. Tompkins Titanium nitride oxidation spectroscopy study chemistry: An X-ray photoelectron. J. Appl. Phys. 72, 3072–3079 (1992).

    Article  CAS  Google Scholar 

  48. M. Bermingham, S. McDonald, M. Dargusch, and D. StJohn Grain-refinement mechanisms in titanium alloys. J. Mater. Res. 23, 97–104 (2007).

    Article  CAS  Google Scholar 

  49. M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn The mechanism of grain refinement of titanium by silicon. Scr. Mater. 58, 1050–1053 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge financial support from the National Science Foundation under the grant number NSF-CMMI 1538851 (PI—Bandyopadhyay) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number R01 AR067306-01A1. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avila, J.D., Bandyopadhyay, A. Influence of boron nitride on reinforcement to improve high temperature oxidation resistance of titanium. Journal of Materials Research 34, 1279–1289 (2019). https://doi.org/10.1557/jmr.2019.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.11

Navigation