Skip to main content
Log in

N and C Interstitial Diffusion and Thermodynamic Interactions in \(\varepsilon \)-Iron Carbonitride

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The simultaneous diffusion of N and C over the interstitial sites of the Fe-sublattice of \(\varepsilon \)-iron carbonitride was studied. To this end, gas nitrocarburizing experiments of pure Fe and Fe-C alloys were performed at 853 K (580 °C), leading to two different types of microstructures containing \(\varepsilon \) (sub)layers. These microstructures were investigated by light microscopy, electron probe microanalysis, and X-ray diffraction in order to evaluate the components of the (N and C) diffusivity matrix. The off-diagonal components of the diffusivity matrix were shown to have significant, non-negligible values. These results provided insight into the thermodynamics of the Fe-N-C system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Diffusion paths indicate the change of (laterally averaged) composition and constitution in a diffusion couple at constant temperature and pressure. Often, they are drawn by superposition on an isothermal section of the phase diagram of the considered system.[17,3739]

  2. The authors are aware that a C correction on the basis of mass fractions or X-ray counts would in principle be a better approach. For the concentration range considered here, however, the difference is marginal.

  3. The fluxes listed in Table VIII were calculated with the assumption of zero flux of C from the substrate in the direction of the surface. This is justified since both recent models for the system Fe-N-C[21,22] predict a higher chemical potential of C in the \(\varepsilon _2\) layer than in the \(\alpha \)+\(\theta \) substrate.

References

  1. E.J. Mittemeijer, ASM Handbook. Steel Heat Treating Fundamentals and Processes, vol. 4A (ASM International, Materials Park, OH, 2013)

    Google Scholar 

  2. P. Grieveson, E. Turkdogan, Trans. TMS-AIME 230, 407–414 (1964)

    Google Scholar 

  3. P. Grieveson, E. Turkdogan, Trans. TMS-AIME 230, 1604–1609 (1964)

    Google Scholar 

  4. B. Prenosil, Konove Mater. 3, 69–87 (1965)

    Google Scholar 

  5. A.E. Lord, D.N. Beshers, Acta Metall. 14, 1659–1672 (1966)

    Article  Google Scholar 

  6. J.R.G. Da Silva, R.B. McLellan, Mater. Sci. Eng. 26, 83–87 (1976)

    Article  Google Scholar 

  7. Y.M. Lakhtin, Y.D. Kogan, Nitriding of Steel (Mashinostroenie, Moscow, 1976)

    Google Scholar 

  8. J. Colwell, G.W. Powell, J.L. Ratliff, J. Mater. Sci. 12, 543–548 (1977)

    Article  Google Scholar 

  9. H.C.F. Rozendaal, E.J. Mittemeijer, P.F. Colijn, P.J. van der Schaaf, Metall. Trans. A 14A, 395–399 (1983)

    Article  Google Scholar 

  10. P.B. Friehling, F.W. Poulsen, M.A.J. Somers, Z. Metallkd. 92, 589–595 (2001)

    Google Scholar 

  11. H. Du: Ph.D. Thesis, Royal Institute of Technology, 1994.

  12. L. Torchane: Ph.D. Thesis, INPL Nancy, 1994.

  13. M.A.J. Somers, E.J. Mittemeijer, Metall. Mater. Trans. A 26A, 57–74 (1995)

    Article  Google Scholar 

  14. L. Torchane, P. Bilger, J. Dulcy, M. Gantois, Metall. Mater. Trans. A 27A, 1823–1835 (1996)

    Article  Google Scholar 

  15. T. Belmonte, M. Gouné, H. Michel, Mater. Sci. Eng. A A302, 246–257 (2001)

    Article  Google Scholar 

  16. A. Fraguela, J. Gómez, F. Castillo, J. Oseguera, Math. Comput. Simul. 79, 1878–1894 (2009)

    Article  Google Scholar 

  17. J.S. Kirkaldy, D.J. Young, Diffusion in the Condensed State (The Institute of Metals, London, 1987)

    Google Scholar 

  18. M.E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications (Wiley, New York, 2000)

    Google Scholar 

  19. J.T. Slycke, L. Sproge, J. Ågren, Scand. J. Metall. 17, 122–126 (1988)

    Google Scholar 

  20. H. Du, M. Hillert, Z. Metallkd. 82, 310–316 (1991)

    Google Scholar 

  21. H. Du, J. Phase Equilib. 14, 682–693 (1993)

    Article  Google Scholar 

  22. J. Kunze, Härterei.-Tech. Mitt. 51, 348–355 (1996)

    Google Scholar 

  23. H. Du, J. Ågren, Metall. Mater. Trans. A 27A, 1073–1080 (1996)

    Article  Google Scholar 

  24. T. Woehrle, A. Leineweber, E.J. Mittemeijer, Metall. Mater. Trans. A 44A, 2548–2562 (2013)

    Article  Google Scholar 

  25. J.-O. Andersson, J. Ågren, J. Appl. Phys. 72, 1350–1355 (1992)

    Article  Google Scholar 

  26. R. Kohlhaas, P. Duenner, N. Schmitz-Pranghe, Z. Angew. Phys. 23, 245–249 (1967)

    Google Scholar 

  27. M.A.J. Somers, N.M. van der Pers, D. Schalkoord, E.J. Mittemeijer, Metall. Trans. A 20A, 1533–1539 (1989)

    Article  Google Scholar 

  28. T. Liapina, A. Leineweber, E.J. Mittemeijer, W. Kockelmann, Acta Mater. 52, 173–180 (2004)

    Article  Google Scholar 

  29. M. Nikolussi, S.L. Shang, T. Gressmann, A. Leineweber, E.J. Mittemeijer, Y. Wang, Z.-K. Liu, Scripta Mater. 59, 814–817 (2008)

    Article  Google Scholar 

  30. H.A. Wriedt, N.A. Gokcen, R.H. Nafziger, J. Phase Equilib. 8, 355–377 (1987)

    Google Scholar 

  31. J. Stein, R.E. Schacherl, M.S. Jung, S. Meka, B. Rheingans, E.J. Mittemeijer, Int. J. Mater. Res. 104, 1053–1065 (2013)

    Article  Google Scholar 

  32. P. Gustafson, Scand. J. Metall. 14, 259–267 (1985)

    Google Scholar 

  33. T. Woehrle, A. Leineweber, E.J. Mittemeijer, Metall. Mater. Trans. A 43A, 2401–2413 (2012)

    Article  Google Scholar 

  34. A. Leineweber, T. Gressmann, E.J. Mittemeijer, Surf. Coat. Technol. 206, 2780–2791 (2012)

    Article  Google Scholar 

  35. E.J. Mittemeijer, J.T. Slycke, Surf. Eng. 12, 152–162 (1996)

    Article  Google Scholar 

  36. T. Gressmann, M. Nikolussi, A. Leineweber, E.J. Mittemeijer, Scripta Mater. 55, 723–726 (2006)

    Article  Google Scholar 

  37. F.J.J. van Loo, Prog. Solid State Chem. 20, 47–99 (1990)

    Article  Google Scholar 

  38. M. Kizilyalli, J. Corish, R. Metselaar, Pure Appl. Chem. 71, 1307–1325 (1999)

    Article  Google Scholar 

  39. A.A. Kodentsov, G.F. Bastin, F.J.J. van Loo, J. Alloys Compd. 320, 207–217 (2001)

    Article  Google Scholar 

  40. P.F. Colijn, E.J. Mittemeijer, H.C.F. Rozendaal, Z. Metallkd. 74, 620–627 (1983)

    Google Scholar 

  41. A. Wells, J. Mater. Sci. 20, 2439–2445 (1985)

    Article  Google Scholar 

  42. G. Petzow, Metallographic Etching: Techniques for Metallography, Ceramography, Plastography (ASM International, Materials Park, OH, 1999)

    Google Scholar 

  43. J.S. Duerr, R.E. Ogilvie, Anal. Chem. 44, 2361–2367 (1972)

    Article  Google Scholar 

  44. J.L. Pouchou, F. Pichoir, Rech. Aerosp. 3, 167–192 (1984)

    Google Scholar 

  45. M.A.J. Somers, E.J. Mittemeijer, Surf. Eng. 3, 123–137 (1987)

    Article  Google Scholar 

  46. H. Du, M.A.J. Somers, J. Ågren, Metall. Mater. Trans. A 31A, 195–211 (2000)

    Article  Google Scholar 

  47. X. Gu, G.M. Michal, F. Ernst, H. Kahn, A.H. Heuer, Metall. Mater. Trans. A 45A, 4268–4279 (2014)

    Article  Google Scholar 

  48. R.M. Asimov, Trans. AIME 230, 611–613 (1964)

    Google Scholar 

  49. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Comput. Coupling Phase Diagr. Thermochem. 26, 273–312 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs S. Haug from the Stuttgart Center for Electron Microscopy (Max Planck Institute for Intelligent Systems) for her help with performing the EPMA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Göhring.

Additional information

Manuscript submitted December 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göhring, H., Leineweber, A. & Mittemeijer, E.J. N and C Interstitial Diffusion and Thermodynamic Interactions in \(\varepsilon \)-Iron Carbonitride. Metall Mater Trans A 46, 3612–3626 (2015). https://doi.org/10.1007/s11661-015-2982-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2982-5

Keywords

Navigation