Skip to main content
Log in

A Laser Deposition Strategy for the Efficient Identification of Glass-Forming Alloys

  • Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Compositionally graded Cu-Zr specimens covering a wide composition range (30 to 60 at. pct Zr) were fabricated by direct laser deposition. By observing the surface topography of the as-fabricated specimens with differential interference contrast microscopy, primarily amorphous regions corresponding to compositions of high glass-forming ability were rapidly identified. Electron diffraction results confirmed the relationship between surface topography and atomic structure. The compositional widths of the amorphous regions were observed to narrow with increasing heat input from the laser, enabling further identification of local maxima in the glass-forming landscape of Cu-Zr alloys. In this work, we report two peaks in the glass-forming ability, located at Cu64.7Zr35.3 and Cu50.2Zr49.8. These two compositions find excellent agreement with previously reported results based on casting of discrete compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Klement, R. Willens, and P. Duwez, Nature 187, 869–70 (1960).

    Article  Google Scholar 

  2. J. F. Löffler, Intermetallics 11, 529–40 (2003).

    Article  Google Scholar 

  3. A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM 38, 179–83 (1997).

    Article  Google Scholar 

  4. D. Turnbull, Contemp. Phys. 10, 473–88 (1969).

    Article  Google Scholar 

  5. A. Inoue, T. Zhang, and T. Masumoto, J. Non. Cryst. Solids 156, 473–80 (1993).

    Article  Google Scholar 

  6. Z. Lu and C. Liu, Phys. Rev. Lett. 91, 1155051-54 (2003).

    Google Scholar 

  7. Z. L. Long, G. Q. Xie, H. Q. Wei, X. P. Su, J. Peng, P. Zhang, and A. Inoue, Mater. Sci. Eng. A 509, 23–30 (2009).

    Article  Google Scholar 

  8. T. A. Waniuk, J. Schroers, and W. L. Johnson, Appl. Phys. Lett. 78, 1213–15 (2001).

    Article  Google Scholar 

  9. Y. Li, J. Mater. Sci. Technol. 15, 97–110 (1999).

    Google Scholar 

  10. D. B. Miracle, Acta Mater. 54, 4317–36 (2006).

    Article  Google Scholar 

  11. D. B. Miracle, Nat. Mater. 3, 697–702 (2004).

    Article  Google Scholar 

  12. D.B. Miracle, A.L. Greer, and K.F. Kelton: J. Non-Cryst. Solids 354, 4049–55, 2008.

    Article  Google Scholar 

  13. A. P. Wang, J. Q. Wang, and E. Ma, Appl. Phys. Lett. 90, 1219121–23 (2007).

    Google Scholar 

  14. J. H. Na, M. D. Demetriou, M. Floyd, A. Hoff, G. R. Garrett, and W. L. Johnson, Proc. Natl. Acad. Sci. U. S. A. 111, 9031–36 (2014).

    Article  Google Scholar 

  15. Y. P. Deng, Y. F. Guan, J. D. Fowkes, S. Q. Wen, F. X. Liu, G. M. Pharr, P. K. Liaw, C. T. Liu, and P. D. Rack, Intermetallics 15, 1208–16 (2007).

    Article  Google Scholar 

  16. A. Y. Li, Q. Guo, J. A. Kalb, C. V Thompson, and Y. Li, Science 322, 1816–19 (2008).

    Article  Google Scholar 

  17. S. Y. Ding, J. Gregoire, J. J. Vlassak, and J. Schroers, J. Appl. Phys. 111, 1149011–16 (2012).

    Article  Google Scholar 

  18. S. Y. Ding, Y. H. Liu, Y. L. Li, Z. Liu, S. Sohn, F. J. Walker, and J. Schroers, Nat. Mater. 13, 494–500 (2014).

    Article  Google Scholar 

  19. P. Tsai and K. M. Flores, Intermetallics 55, 162–66 (2014).

    Article  Google Scholar 

  20. J. Kim, D. Lee, S. Shin, and C. Lee, Mater. Sci. Eng. A 434, 194–201 (2006).

    Article  Google Scholar 

  21. B. Li, Z. Y. Li, J. G. Xiong, L. Xing, D. Wang, and Y. Li, J. Alloys Compd. 413, 118–21 (2006).

    Article  Google Scholar 

  22. D. Carvalho, S. Cardoso, and R. Vilar, Scripta Mater. 37, 523–27 (2003).

    Article  Google Scholar 

  23. F. Audebert, R. Colaco, R. Vilar, and H. Sirkin, Scripta Mater. 48, 281–86 (2003).

    Article  Google Scholar 

  24. X. L. Wu and Y. S. Hong, Surf. Coatings Technol. 132, 194–97 (2000).

    Article  Google Scholar 

  25. X. Wu, B. Xu, and Y. Hong, Mater. Lett. 56, 838–41 (2002).

    Article  Google Scholar 

  26. B. Q. Chen, Y. Li, Y. Cai, R. Li, S. J. Pang, and T. Zhang, J. Alloys Compd. 511, 215–20 (2012).

    Article  Google Scholar 

  27. B. Zheng, Y. Zhou, J. E. Smugeresky, and E. J. Lavernia, Metall. Mater. Trans. A 40, 1235–45 (2009).

    Article  Google Scholar 

  28. G. L. Yang, X. Lin, F. C. Liu, Q. Hu, L. Ma, J. F. Li, and W. D. Huang, Intermetallics 22, 110–15 (2012).

    Article  Google Scholar 

  29. R. Petters, M. Stoica, S. Scudino, S. Pauly, and L. Lo, Mater. Today 16, 37–41 (2013).

    Article  Google Scholar 

  30. D. Ausserré and M. P. Valignat, Nano Lett. 6, 1384–88 (2006).

    Article  Google Scholar 

  31. H. Sun and K. M. Flores, J. Mater. Res. 23, 2692–703 (2011).

    Article  Google Scholar 

  32. H. Sun and K. M. Flores, Metall. Mater. Trans. A 41, 1752–57 (2010).

    Article  Google Scholar 

  33. D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, and E. Ma, Appl. Phys. Lett. 84, 4029–31 (2004).

    Article  Google Scholar 

  34. D. Xu, B. Lohwongwatana, G. Duan, W. L. Johnson, and C. Garland, Acta Mater. 52, 2621–24 (2004).

    Article  Google Scholar 

  35. D. C. Hofmann, G. Duan, and W. L. Johnson, Scripta Mater. 54, 1117–22 (2005).

    Article  Google Scholar 

  36. G. Duan, D. H. Xu, Q. Zhang, G. Y. Zhang, T. Cagin, W. L. Johnson, and W. A. Goddard, Phys. Rev. B 71, 2242081–89 (2005).

    Article  Google Scholar 

  37. O. J. Kwon, Y. C. Kim, K. B. Kim, Y. K. Lee, and E. Fleury, Met. Mater. Int. 12, 207–12 (2006).

    Article  Google Scholar 

  38. X. H. Lin, W. L. Johnson, and W. K. Rhim, Mater. Trans. JIM 38, 473–77 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Defense Threat Reduction Agency, award number HDTRA1-11-1-0047, and the Air Force Office of Scientific Research, award number FA9550-12-1-0059. Copper powder was provided by the Materials Preparation Center, Ames Laboratory, US DOE Basic Energy Sciences, Ames, IA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine M. Flores.

Additional information

Manuscript submitted December 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, P., Flores, K.M. A Laser Deposition Strategy for the Efficient Identification of Glass-Forming Alloys. Metall Mater Trans A 46, 3876–3882 (2015). https://doi.org/10.1007/s11661-015-2900-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2900-x

Keywords

Navigation