Skip to main content
Log in

Formation of amorphous phase in the binary Cu−Zr alloy system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The aim of this work is to elucidate the formation of the amorphous phase in the Cu−Zr binary alloy system. It was found that 1 mm diameter rods with a fully amorphous structure can be prepared in a relatively wide range of compositions. In contrast, the formation of 2 mm diameter rods was achieved only for the Cu64Zr36 alloy and in the range of Cu53Zr47−Cu50Zr50, which are compositions near the energetically stable Cu2Zr and CuZr intermetallic compounds. The difference between the calculated Gibbs free energy of the amorphous phase and the intermetallic compounds gives insight into the range of glass formation. In addition, the formation of the energetically stable phases can be kinetically by-passed owing to the crystallization of several competing phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Klement Jr., R. H. Willens, and P. Duwez,Nature 187, 869 (1960).

    Article  ADS  CAS  Google Scholar 

  2. K. Samwer and W. L. Johnson,Phys. Rev. B 28, 2907 (1983).

    Article  ADS  CAS  Google Scholar 

  3. R. B. Schwarz and W. L. Johnson,Phys. Rev. Lett. 51, 415 (1983).

    Article  ADS  CAS  Google Scholar 

  4. A. Blatter and M. von Allmen,Phys. Rev. Lett. 54, 2103 (1985).

    Article  PubMed  ADS  CAS  Google Scholar 

  5. G. Linker,Solid State Commun. 57, 773 (1986).

    Article  ADS  CAS  Google Scholar 

  6. L. Sziraki, E. Kuzmann, M. El-Sharif, C. U. Chisholm, G. Principi, C. Tosello, and A. Vertes,Electrochem. Commun. 2, 619 (2000).

    Article  CAS  Google Scholar 

  7. R. B. Schwarz, R. R. Petrich and C. K. Saw,J. Non-Cryst. Solids 76, 281 (1985).

    Article  ADS  CAS  Google Scholar 

  8. J. W. Cahn and L. A. Bendersky,Proc. of Amorphous and Nanocrystalline Metals (eds. R. Busch, T. C. Hufnagel, J. Eckert, A. Inoue, W. L. Johnson, and A. R. Yavari), Vol. 806, p. MM2.7.1, Materials Research Society, Warrendale, PA, USA (2004).

    Google Scholar 

  9. R. Bormann,Mater. Sci. Eng. A 178, 55 (1994).

    Article  CAS  Google Scholar 

  10. A. L. Greer,J. Less-Common Met. 140, 327 (1988).

    Article  CAS  Google Scholar 

  11. R. Bormann,Proc. of Thermodynamics of Alloy Formation (eds. Y. A. Chang and F. Sommer), p. 171, The Minerals, Metals and Materials Society, Warrendale, PA, USA (1997).

    Google Scholar 

  12. R. Ray, B. C. Giessen, and N. J. Grant,Scripta metall. 2, 357 (1968).

    Article  CAS  Google Scholar 

  13. A. Inoue and W. Zhang,Mater. Trans. 45, 584 (2004).

    Article  CAS  Google Scholar 

  14. D. H. Xu, G. Duan, and W. L. Johnson,Phys. Rev. Lett. 92, 245504–1 (2004).

    Article  PubMed  ADS  Google Scholar 

  15. M. B. Tang, D. Q. Zhao, M. X. Pan, and W. H. Wang,Chinese Phys. Lett. 21, 901 (2004).

    Article  ADS  CAS  Google Scholar 

  16. A. J. Kerns, D. E. Polk, R. Ray, and B. C. Giessen,Mat. Sci. Eng. 38, 49 (1979).

    Article  CAS  Google Scholar 

  17. K. H. J. Buschow,J. Appl. Phys. 52, 3319 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Z. Altounian, Tu Guo-hua, and J. O. Strom-Olsen,J. Appl. Phys. 53, 4755 (1982).

    Article  ADS  Google Scholar 

  19. E. Kneller, Y. Khan, and U. Gorres,Z. Metallkd. 77, 152 (1986).

    CAS  Google Scholar 

  20. M. H. Braga, L. Malheiros, F. Castro, and D. Soares,Z. Metallkd. 89, 541 (1998).

    CAS  Google Scholar 

  21. H. Perepezko and J. S. Paik,J. Non-Cryst. Solids 61–62, 113 (1984).

    Article  Google Scholar 

  22. H. B. Singh and A. Holz,Solid State Commun. 45, 985 (1983).

    Article  ADS  CAS  Google Scholar 

  23. J. A. Alonso, L. J. Gallego, and J. M. Lopez,Philos. Mag. A 58, 79 (1988).

    Article  ADS  CAS  Google Scholar 

  24. F. R. de Boer, R. Bloom, W. C. Mattens, A. R. Miedema, and A. K. Niessen,Cohesion in Metals: Transition Metal Alloys, North-Holland Physics Publishing, Amsterdam (1989).

    Google Scholar 

  25. A. I. Zaitsev, N. E. Zaitseva, Y. P. Alekseeva, S. F. Dunaev, and Y. S. Nechaev,Phys. Chem. Chem. Phys. 5, 4185 (2003).

    Article  CAS  Google Scholar 

  26. W. H. Wang, J. J. Lewandowski, and A. L. Greer,J. Mat. Res. 20, 2307 (2005).

    Article  ADS  CAS  Google Scholar 

  27. J. W. Seo and D. Schryvers,Acta mater. 46, 1165 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fleury.

Additional information

This article is based on a presentation made in the symposium “The 7th KIM-JIM Symposium & the 3rd International Symposium on nanostructured Materials Technology”, held at KINTEX, Ilsan, Korea, October 27–28, 2005 under auspices of the Korean Institute of Metals and Materials, The Japan Institute of Metals and Center for Nanostructured Materials Materials Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, O.J., Kim, Y.C., Kim, K.B. et al. Formation of amorphous phase in the binary Cu−Zr alloy system. Met. Mater. Int. 12, 207–212 (2006). https://doi.org/10.1007/BF03027532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027532

Keywords

Navigation