Skip to main content
Log in

Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Electron microscopy techniques have been used to investigate the cause of premature creep failure in the fusion zone of INCONEL® Alloy 740H® (INCONEL and 740H are registered trademarks of Special Metals Corporation) welds. The reduced creep rupture lives of all-weld-metal and cross-weld creep specimens (relative to base metal specimens) have been attributed to the presence of large grain boundary regions that were denuded in fine γ′ but contained coarse, elongated particles. Investigation of creep rupture specimens has revealed four factors that influence the formation of these coarsened zones, and the large particles found within them have been identified as γ′. Comparisons of the microstructural characteristics of these zones to the characteristics that are typical of denuded zones formed by a variety of mechanisms identified in the literature have been made. It is concluded that the mechanism of γ′-denuded zone formation in alloy 740H is discontinuous coarsening of the γ′ phase. The discontinuous reaction is catalyzed by the grain boundary migration and sliding which occur during creep and likely promoted by the inhomogeneous weld metal microstructure that results from solute segregation during solidification. The increased susceptibility to the formation of the observed γ′-denuded zones in the weld metal as compared to the base metal is discussed in the context of differences in the contributions to the driving force for the discontinuous coarsening reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Blum and J. Bugge: 6th Inter. Conf. on Advances in Mater. Tech. for Fossil Power Plants, Sante Fe, NM, Aug. 31-Sept. 3, 2010, ASM International, Materials Park, OH, 2011, pp. 1–10.

  2. Smith, G. & Shoemaker, L., Adv. Mater. Process., 2004, vol. 162, pp. 23-26.

    Google Scholar 

  3. J.N. Phillips and J.M. Wheeldon: 6th Inter. Conf. on Advances in Mater. Tech. for Fossil Power Plants, Sante Fe, NM, Aug. 31-Sept. 3, 2010, ASM International, Materials Park, OH, 2011, pp. 53–64.

  4. Sarver, J. M. & Tanzosh, J. M., Energy Mater., 2007, vol. 2, pp. 227-34.

    Article  Google Scholar 

  5. M. Speicher, A. Klenk, K. Maile, and E. Roos: Euro Superalloys 2010, Wildbach Kreuth, Germany, May 25–28, 2010, Trans Tech Publications, Clausthal-Zellerfeld, Germany, 2011, pp. 241–46.

  6. G. Smith and H.W. Sizek: Corrosion 2000, Orlando, FL, Mar. 26–31, 2000, Paper No. 00256, NACE International, Houston, TX, 2001.

  7. B.A. Baker: Superalloys 718, 625, 706, and Various Derivatives, Oct. 2–6, 2005, Pittsburgh, PA, TMS, Warrendale, PA, 2005, pp. 601–11.

  8. J.P. Shingledecker, R.W. Swindeman, Q. Wu, and V.K. Vasudevan: 4th Inter. Conf. on Advances in Mater. Tech. for Fossil Power Plants, Hilton Head Island, SC, Oct. 25–28, ASM International, Materials Park, OH, 2004, pp. 1198–1212.

  9. M.S. Gagliano, H. Hack, and G. Stanko: 33rd Inter. Technical Conf. on Clean Coal Utilization & Fuel Systems, Clearwater, FL, Jun. 1–5, 2008, Coal Technology Association, Gaithersburg, MD, 2010, pp. 1221–32.

  10. M.S. Gagliano, H. Hack, and G. Stanko: 34th Inter. Technical Conf. on Clean Coal Utilization & Fuel Systems, Clearwater, FL, May 31–Jun. 4, 2009, Coal Technology Association, Gaithersburg, MD, 2010, pp. 379–90.

  11. J.J. de Barbadillo, B.A. Baker, and L. Klingensmith: 4th Baosteel Biennial Academic Conference, Nov. 16–18, 2010, Shanghai, China, Baosteel Group Corporation, Shanghai, China, 2010.

  12. ASME Code Case 2702: ASME Boiler and Pressure Vessel Code, ASME International, New York, NY, 2012.

  13. ASTM E139-11: Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials, Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, PA, 2011.

  14. Drouin, D., Couture, A. R., Joly D., Tastet, X., Aimez, V., & Gauvin, R., Scanning, 2007, vol. 29, pp. 92-101.

    Article  Google Scholar 

  15. Patel, B. & Watanabe, M., Microsc. Microanal., 2014, vol. 20, pp. 124-32.

    Article  Google Scholar 

  16. Andersson, J. O., Helander, T., Höglund, L., Shi, P. F., & Sundman, B., Calphad, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  17. ThermoTech TTNi7 Ni-Based Superalloys Thermodynamic Database Version 7, ThermoTech, Ltd., Guildford, U.K., 2006.

  18. DuPont, J. N., Lippold, J. C., & Kiser, S. D., Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 59-65.

    Google Scholar 

  19. Zhao, S. Q., Jiang, Y., Dong, J. X. & Xie, X. S., Acta Metall. Sinica (English Letters), 2006, vol. 19, pp. 425-31.

    Article  Google Scholar 

  20. Evans, N. D., Maziasz, P. J., Swindeman, R. W. & Smith, G. D., Scripta Mater., 2004, vol. 51, pp. 503-07.

    Article  Google Scholar 

  21. J.P. Shingledecker: 7th Inter. Conf. on Advances in Mater. Tech. for Fossil Power Plants,Oct. 22–25, 2013, Waikoloa, HI, ASM International, Materials Park, OH, 2014, pp. 230–41.

  22. Reed, R. C., The Superalloys: Fundamentals and Applications, 1st Ed., Cambridge University Press, New York, NY, 2006, pp. 40-49.

    Book  Google Scholar 

  23. Baither, D., Herding, T., Krol, T., Reichelt, R. & Nembach, E., Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 279-83.

    Article  Google Scholar 

  24. Krol, T., Baither, D. & Nembach, E., Scripta Mater., 2003, vol. 48, pp. 1189-94.

    Article  Google Scholar 

  25. Krol, T., Baither, D. & Nembach, E., Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 214-17.

    Article  Google Scholar 

  26. Baither, D., Krol, T. & Nembach, E., Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 163-66.

    Article  Google Scholar 

  27. Baither, D., Krol, T. & Nembach, E., Philos. Mag., 2003, vol. 83, pp. 4011-29.

    Article  Google Scholar 

  28. Kassner, M. E., Fundamentals of Creep in Metals and Alloys, 2nd Ed., Elsevier Science, Oxford, UK, 2009, pp. 97-101.

    Google Scholar 

  29. Wadsworth, J., Ruano, O. A. & Sherby, O. D., Metall. Mater. Trans. A, 2002, vol. 33, pp. 219-29.

    Article  Google Scholar 

  30. Karim, A., Holt, D. L. & Backofen, W. A., Trans. Met. Soc. AIME, 1969, vol. 245, pp. 2421-24.

    Google Scholar 

  31. Tien, J. K. & Gamble, R. P., Metall. Trans., 1971, vol. 2, pp. 1663-67.

    Google Scholar 

  32. Kloc, L, Scripta Mater., 1996, vol. 35, pp. 539-41.

    Article  Google Scholar 

  33. Ruano, O. A., Sherby, O. D., Wadsworth, J. & Wolfenstine, J., Scripta Mater., 1998, vol. 38, pp. 1307-14.

    Article  Google Scholar 

  34. Greenwood, G. W., Scripta Metall. Mater., 1994, vol. 30, pp. 1527-30.

    Article  Google Scholar 

  35. Wolfenstine, J., Ruano, O. A., Wadsworth, J. & Sherby, O. D., Scripta Metall. Mater. 1993, vol. 29, pp. 515-20.

    Article  Google Scholar 

  36. McNee, K. R., Greenwood, G. W. & Jones, H., Scripta Mater., 2002, vol. 46, pp. 437-39.

    Article  Google Scholar 

  37. Burton, B. & Reynolds, G. L., Mater. Sci. Eng. A, 1995, vol. 191, pp. 135-141.

    Article  Google Scholar 

  38. Ruano, O. A., Sherby, O. D., Wadsworth, J. & Wolfenstine, J., Mater. Sci. Eng. A, 1996, vol. 211, pp. 66-71.

    Article  Google Scholar 

  39. Decker, R. F. & Mihalisin, J. R., Trans. ASM, 1969, vol. 62, pp. 481-89.

    Google Scholar 

  40. DuPont, J. N., Lippold, J. C., & Kiser, S. D., Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 161-73.

    Google Scholar 

  41. Maldonado, R. & Nembach, E., Acta Mater., 1997, vol. 45, pp. 213-24.

    Article  Google Scholar 

  42. Rao, K. B., Seetharaman, V., Mannan, S. L. & Rodriguez, P., J. Nucl. Mater., 1981, vol. 102, pp. 7–16.

    Article  Google Scholar 

  43. Partridge, A., Noble, F. W. & Tatlock, G. J., J. Nucl. Mater., 1992, vol. 186, pp. 100-16.

    Article  Google Scholar 

  44. Doh, J.-M., Yoo, K.-K., Baik, H.-K., Choi, J. & Hur, S.-K., Scripta Mater., 1996, vol. 34, 537-42.

    Article  Google Scholar 

  45. Ashby, M. F. & Palmer, I. G., Acta Metall., 1967, vol. 15, pp. 420-23.

    Article  Google Scholar 

  46. Decker, R. F. & Freeman, J. W., Trans. AIME, 1960, vol. 218, 277-85.

    Google Scholar 

  47. Wu, X.-J. & Koul, A. K., Metall. Mater. Trans. A, 1995, vol. 26, pp. 905-14.

    Article  Google Scholar 

  48. Fleetwood, M. J., J. Inst. Metals, 1961, vol. 90, pp. 429-30.

    Google Scholar 

  49. Williams, D. B. & Butler, E. P., Int. Mater. Rev., 1981, vol. 26, pp. 153-83.

    Article  Google Scholar 

  50. Y. Bréchet and C. Hutchinson: in Solid State Physics: Advances in Research in Applications, vol. 60, H. Ehrenreich and F. Spaepen, eds., Elsevier, Oxford, U.K., 2006, pp. 230–31.

  51. Porter, D. A. & Easterling, K. E., Phase Transformations in Metals and Alloys, 2nd Ed., Taylor and Francis Group, Boca Raton, FL, 1992, pp. 322-26.

    Book  Google Scholar 

  52. Funkenbusch, A. W., Metall. Trans. A, 1983, vol. 14, pp. 1283-92.

    Article  Google Scholar 

  53. Tavassoli, A. & Colombe, G., Metall. Trans. A, 1978, vol. 9, pp. 1203-11.

    Article  Google Scholar 

  54. B.I. Selling and I.O. Smith: 7th Inter. Conf. on the Strength of Metals and Alloys, Montreal, Quebec, Canada, Aug. 12–16, 1985, Pergamon, New York, NY, 1986, pp. 725–30.

  55. Rosenthal, R. & West, D. R. F., Mater. Sci. and Tech., 1999, vol. 15, pp. 1387-94.

    Article  Google Scholar 

  56. Sukhovarov, V. F., Svitich, Y. U. V. & Rtishchev, V. V., Phys. Met. Metallogr. (USSR), 1981, vol. 52, pp. 139-44.

    Google Scholar 

  57. Davies, C. K. L., Nash, P. G., Stevens, R. N. & Yap, L. C., J. Mater. Sci., 1985, vol. 20, pp. 2945-57.

    Article  Google Scholar 

  58. Tu, K. & Turnbull, D., Acta Metall., 1967, vol. 15, pp. 369-76.

    Article  Google Scholar 

  59. Fournelle, R. & Clark, J., Metall. Trans., 1972, vol. 3, pp. 2757-67.

    Article  Google Scholar 

  60. Nes, E. & Billdal, H., Acta Metall., 1977, vol. 25, pp. 1039-46.

    Article  Google Scholar 

  61. Manna, I., Pabi, S. K. & Gust, W., Int. Mater. Rev., 2001, vol. 46, pp. 53-91.

    Article  Google Scholar 

  62. Zieba, P. & Gust, W., Z. Fuer. Met. Res. Adv. Tech., 2000, vol. 91, pp. 532-43.

    Google Scholar 

  63. Zieba, P., Z. Fuer. Met. Res. Adv. Tech., 1999, vol. 90, pp. 669-74.

    Google Scholar 

  64. Ma, C. Y., Rabkin, E., Gust, W. & Hsu, S. E., Acta Metall. Mater., 1995, vol. 43, pp. 3113-24.

    Article  Google Scholar 

  65. Bechetti, D. H., Dupont, J. N., Debarbadillo, J. J. & Baker, B. A., Metall. Mater. Trans. A, 2014, vol. 45, pp. 3051-63.

    Article  Google Scholar 

  66. J.M. Zuo and J.C. Mabon: Microsc. Microanal., 2004, vol. 10(suppl. 2), pp. 1000–01. http://emaps.mrl.uiuc.edu/. Accessed 26 Mar 2013.

  67. Porter, D. A. & Edington, J. W., Proc. R. Soc. Lond. Math. Phys. Sci., 1978, vol. 358, pp. 335-50.

    Article  Google Scholar 

  68. Thermo-Calc Software MOB2 TCS Alloy Mobility Database. Thermo-Calc Software AB, Stockholm, Sweden.

  69. Aigeltinger, E. & Kersker, M., Met. Forum, 1981, vol. 4, 112-16.

    Google Scholar 

  70. Dai, H., Francis, J. A., Stone, H. J., Bhadeshia, H. K. D. H. & Withers, P. J., Mater. Metall. Trans. A, 2008, vol. 39, pp. 3070-78.

    Article  Google Scholar 

  71. Easterling, K. E., Introduction to the Physical Metallurgy of Welding, 1st Ed., Butterworth-Heinemann, London, UK, 1983, pp. 33-45.

    Google Scholar 

  72. Kou, S., Welding Metallurgy, 2nd Ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003, pp. 122-26.

    Google Scholar 

  73. Ju, C. P. & Fournelle, R. A., Acta Metall., 1985, vol. 33, pp. 71-81.

    Article  Google Scholar 

  74. Livingston, J. D. & Cahn, J. W., Acta Metall., 1974, vol. 22, pp. 495-503.

    Article  Google Scholar 

  75. Tsubakino, H., Nozato, R. & Yamamoto, A., J. Mater. Sci., 1991, vol. 26, pp. 2851-56.

    Article  Google Scholar 

  76. Aaronson, H. I. & Clark, J. B., Acta Metall., 1968, vol. 16, 845-55.

    Article  Google Scholar 

  77. Cahn, J. W., Acta Metall., 1959, vol. 7, 18-28.

    Article  Google Scholar 

  78. Hillert, M., Metall. Trans., 1972, vol. 3, pp. 2729-41.

    Article  Google Scholar 

  79. Turnbull, D., Acta Metall., 1955, vol. 3, pp. 55-63.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the NSF I/UCRC Center for Integrative Materials Joining Science for Energy Applications (CIMJSEA) under contract #IIP-1034703. They would also like to acknowledge the financial support provided by Special Metals Corporation, Huntington, WV. Additional thanks are given to Binay Patel at Lehigh University for assistance with the STEM in SEM characterization, as well as to Ronnie Gollihue at Special Metals, Jim Tanzosh at Babcock and Wilcox Company, and Paul Mason at ThermoCalc USA for the technical discussion and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Bechetti.

Additional information

Manuscript submitted April 2, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechetti, D.H., DuPont, J.N., de Barbadillo, J.J. et al. Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep. Metall Mater Trans A 46, 739–755 (2015). https://doi.org/10.1007/s11661-014-2682-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2682-6

Keywords

Navigation