Skip to main content
Log in

Cracks in Martensite Plates as Hydrogen Traps in a Bearing Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It is demonstrated that a macroscopically homogeneous distribution of tiny cracks introduced into a martensitic bearing steel sample can provide powerful hydrogen traps. The phenomenon has been investigated through thermal desorption spectroscopy and hydrogen permeation measurements using both cracked and integral samples. The effective hydrogen diffusion coefficient through the cracked sample is found to be far less than in the un-cracked one. Similarly, when samples are charged with hydrogen, and then subjected to thermal desorption analysis, the amount of hydrogen liberated from the cracked sample is smaller due to the trapping by the cracks. Theoretical analysis of the data shows that the traps due to cracks are so strong, that any hydrogen within the cracks can never in practice de-trap and cause harm by mechanisms that require the hydrogen to be mobile for the onset of embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There are alternative interpretations: hydrogen-enhanced decohesion[11] although it has been shown using first principles calculations that this may not be potent,[12] but it is noteworthy that this also requires the diffusion of hydrogen to maintain crack propagation.[9]

References

  1. H.K.D.H. Bhadeshia: Prog. Mater. Sci., 2012, vol. 57, pp. 268–435.

    Article  Google Scholar 

  2. R. Irving and N.A. Scarlett: Wear, 1964, vol. 7, pp. 244–54.

    Article  Google Scholar 

  3. Y. Matsubara and H. Hamada: in Bearing Steel Technology—Advances and State of the Art in Bearing Steel Quality Assurance, J.M. Beswick, ed., ASTM International, West Conshohocken, PA, 2007, pp. 153–66.

  4. M.-H. Evans: Mater. Sci. Technol., 2012, vol. 28, pp. 3–22.

    Google Scholar 

  5. P. Schatzberg and I.M. Felsen: Wear, 1968, vol. 12, pp. 331–42.

    Article  Google Scholar 

  6. K. Tamada and H. Tanaka: Wear, 1996, vol. 199, pp. 245–52.

    Article  Google Scholar 

  7. L. Grunberg, D.T. Jamieson, and D. Scott: Philos. Mag., 1963, vol. 8, pp. 1553–68.

    Article  Google Scholar 

  8. T. Imran, B. Jacobson, and A. Shariff: Wear, 2006, vol. 261, pp. 86–95.

    Article  Google Scholar 

  9. R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390–97.

    Article  Google Scholar 

  10. H.K. Brinbaum and P. Sofronis: Mater. Sci. Eng., A, 1994, vol. 176, pp. 191–202.

    Article  Google Scholar 

  11. A.R. Troiano: Trans. ASM, 1960, vol. 52, pp. 54–80.

    Google Scholar 

  12. E.J. Song, H.K.D.H. Bhadeshia, and D.-W. Suh: Corros. Sci., 2013, vol. 77, pp. 379–84.

    Article  Google Scholar 

  13. M. Śmiałowski: Hydrogen in Steel; Effect of Hydrogen on Iron and Steel During Production, Fabrication and Use, Pergamon Press, Oxford, 1962.

    Google Scholar 

  14. G.M. Pressouyre: Metall. Trans. A, 1979, vol. 10A, pp. 1571–73.

    Article  Google Scholar 

  15. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    Article  Google Scholar 

  16. W. Solano-Alvarez and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4907–15.

    Article  Google Scholar 

  17. W. Solano-Alvarez and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4916–31.

    Article  Google Scholar 

  18. C.A. Stickels: Metall. Trans., 1974, vol. 5, pp. 865–74.

    Article  Google Scholar 

  19. B.D. Craig: Acta Metall., 1977, vol. 25, pp. 1027–30.

    Article  Google Scholar 

  20. A.T.W. Barrow, J.H. Kang, and P.E.J.R.-D. del Castillo: Acta Mater., 2012, vol. 60(6), pp. 2805–15.

    Article  Google Scholar 

  21. K. Kawakami and T. Matsumiya: ISIJ Int., 2013, vol. 53(4), pp. 709–13.

    Article  Google Scholar 

  22. M.A.V. Devanathan and Z. Stachurski: Proc. R. Soc. Lond. A Math. Phys. Sci., 1962, vol. 270(1340), pp. 90–102.

    Article  Google Scholar 

  23. ISO-17081: Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electro- Chemical Technique, Technical Report, 2004.

  24. D.K. Han, K.Y. Kim, S.J. Kim, and H.G. Jung: in The Twenty-third International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2013.

  25. T. Tarui and M. Kubota: Approaches for Fundamental Principles 1: Evaluation Method of Hydrogen Embrittlement and Improvement Techniques of Delayed Fracture, Technical Report 101, Nippon Steel 2012.

  26. L.C.D. Fielding, E.J. Song, D.K. Han, H.K.D.H. Bhadeshia, and D.-W. Suh: Proc. R. Soc. A, 2014, vol. 470, p. 20140108.

  27. E.J. Song, D.W. Suh, and H.K.D.H. Bhadeshia: Comput. Mater. Sci., 2013, vol. 79, pp. 36–44.

    Article  Google Scholar 

  28. H. Swahn, P.C. Becker, and O. Vingsbo: Met. Sci., 1976, vol. 10, pp. 35–39.

    Article  Google Scholar 

  29. O.D. Gonzalez: Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng., 1969, vol. 245, pp. 607–12.

    Google Scholar 

  30. J.W. Christian: in International Conference on Martensitic Transformations ICOMAT’79, G.B. Olson and M. Cohen, eds., Alpine Press, Massachusetts, 1979, pp. 220–34.

  31. K. Huber and G. Herzberg: Molecular Spectra and Molecular Structure 4: Constants of Diatomic Molecules, Van Norstrand Reinhold Co, New York, 1979.

  32. R. Gibala, J. Ratka, J. Talia, and S. Wu: Environmental Reactions and Their Effects on Mechanical Behavior of Metallic Materials, Technical Progress Report, Case Western Reserve University, 1980.

Download references

Acknowledgments

The authors are thankful to other members of the Computational Metallurgy Laboratory at GIFT and from the Phase Transformations and Complex Properties Group at Cambridge University. W. Solano-Alvarez is very grateful for support from the Worshipful Company of Ironmongers, CONACyT, the Cambridge Overseas Trust, and the Roberto Rocca Education Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Solano-Alvarez.

Additional information

Manuscript submitted June 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solano-Alvarez, W., Song, E.J., Han, D.K. et al. Cracks in Martensite Plates as Hydrogen Traps in a Bearing Steel. Metall Mater Trans A 46, 665–673 (2015). https://doi.org/10.1007/s11661-014-2680-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2680-8

Keywords

Navigation