Skip to main content
Log in

White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Although most of the research performed in bearing steel metallurgy aims to prevent crack nucleation and propagation, some applications require the exact opposite in order to study the role that disconnected surfaces inside the bulk material play when load is applied, or when fluids entrapped in surface cracks propagate tensile stresses or exacerbate corrosion. Four heat treatments have been designed to create controlled arrays of crack types and distributions in quenched and untempered steel normally used in the manufacture of bearings. The varieties of cracks studied include sparsely distributed martensite-plate cracks, fine-grain-boundary cracks, abundant martensite-plate cracks, and surface cracks. The intention was to create samples which can then be subjected to appropriate mechanical testing so that phenomena such as the appearance of “white-etching areas” or “white-etching cracks,” crack-lubricant interactions, or hydrogen trapping can be studied further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Errichello, S. Sheng, J. Keller, and A. Greco: Tech. Rep. DOE/GO-102012-3496 February 2012: U. S. Department of Energy: Golden, CO 2012.

  2. A. Grabulov, U. Ziese, H. W. Zandbergen: Scripta Mater. 2007, vol. 57, pp. 635–38.

    Article  Google Scholar 

  3. M.-H. Evans: Materials Science and Technology 2012, vol. 28, pp. 3–22.

    Article  Google Scholar 

  4. H. K. D. H. Bhadeshia: Progress in Materials Science 2012, vol. 57, pp. 268–435.

    Article  Google Scholar 

  5. K. Hiraoka, M. Nagao, T. Isomoto: Journal of ASTM International 2007, vol. 3, pp. 234–40.

    Google Scholar 

  6. R. Fougères, G. Lromand, A. Vincent, D. Nelias, G. Dudragne, D. Girodin, G. Baudry and P. Daguier: in Bearing Steel Technology J. M. Beswick, eds., ASTM International, Philadelphia, 2002 pp. 197–212.

  7. W. Solano-Alvarez and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2014, DOI: 10.1007/s11661-014-2431-x.

  8. R.G. Davies, C.L. Magee: Metallurgical Transactions 1972, vol. 3, pp. 307–13.

    Article  Google Scholar 

  9. A. R. Marder, A. O. Benscoter: Metallurgical Transactions 1970, vol. 1, pp. 3234–37.

    Article  Google Scholar 

  10. A. R. Marder, A. O. Benscoter, G. Krauss: Metallurgical Transactions 1970, vol. 1, pp. 1545–49.

    Article  Google Scholar 

  11. J. Lyman: Journal of Engineering Materials and Technology 1984, vol. 106, pp. 253–56.

    Article  Google Scholar 

  12. S. Chatterjee, H. K. D. H. Bhadeshia: Materials Science and Technology 2006, vol. 22, pp. 645–49.

    Article  Google Scholar 

  13. M. G. Mendiratta, J. Sasser, G. Krauss: Metallurgical Transactions 1972, vol. 3, pp. 351–53.

    Article  Google Scholar 

  14. J.M. Beswick: Tech. Rep. US Patent 4,961,904: U. S. Patent Office 1990.

  15. Z. Lei, A. Zhao, J. Xie, C. Sun, Y. Hong: Theoretical and Applied Mechanics Letters 2012, vol. 2, pp. 031003.

    Article  Google Scholar 

  16. W. Solano-Alvarez, E.J. Song, D.K. Han, D.-W. Suh, and H.K.D.H. Bhadeshia: Unpublished research, 2014.

  17. B. Chalmers, R. King, R. Shuttleworth: Proceedings of the Royal Society A 1948, vol. 193, pp. 465–483.

    Article  Google Scholar 

  18. K. Ryttberg, M. K. Wedel, V. Recina, P. Dahlman, L. Nyborg: Materials Science & Engineering A 2010, vol. 527, pp. 2431–2436.

    Article  Google Scholar 

  19. L. Karmazin: Materials Science & Engineering A 1991, vol. 142, pp. 71–77.

    Article  Google Scholar 

  20. H. Brandis: Vergleichende untersuchungen an DEW–100 Cr 6 und zwei niedriglegierten w¨alzlagerst¨ahlen amerikanischer entwicklung: Tech. Rep. 227/72: Deutsche Edelstalwerke Aktiengesellschaft Krefeld Forschungsinstitut, Germany 1972.

  21. I. L. Goldblatt: Tribology Transactions 1973, vol. 16, pp. 150–59.

    Google Scholar 

  22. N.A. Branch, N.K. Arakere, V. Svensdsen, and N.H. Forster: J. ASTM Int., 2010, vol. 7, pp. ID JAI102529 1–18.

  23. A. Yonezu, T. Hara, T. Kondo, H. Hirakata, K. Minoshima: Materials Science and Engineering A 2012, vol. 531, pp. 147–54.

    Article  Google Scholar 

  24. C. A. Stickels: Metallurgical Transactions 1974, vol. 5, pp. 865–74.

    Article  Google Scholar 

  25. B. Hildenwall: Ph.D. Thesis: Linkoping University: Sweden 1979.

Download references

Acknowledgments

We are thankful to Dr Steve Ooi for advice on experimental techniques and Dr Carsten Schwandt for the use of the vacuum oven and isostatic press. W. Solano-Alvarez is thankful to CONACyT, the Cambridge Overseas Trusts, and the Roberto Rocca Education Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Solano-Alvarez.

Additional information

Manuscript submitted December 11, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solano-Alvarez, W., Bhadeshia, H.K.D.H. White-Etching Matter in Bearing Steel. Part I: Controlled Cracking of 52100 Steel. Metall Mater Trans A 45, 4907–4915 (2014). https://doi.org/10.1007/s11661-014-2430-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2430-y

Keywords

Navigation