Skip to main content
Log in

Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present paper, the nano-indentation technique is used to investigate the effects of inclusions on machinability of free-cutting steel. Firstly, the hardness, elastic moduli, and load–displacement curves of inclusions are analyzed and compared with matrix. Secondly, the effects of inclusions on machinability are investigated using nano-indentation measurements and thermodynamic calculations. Lastly, errors of nano-indentation measurements and macrohardness tests are analyzed. The hardness of BN is lower than that of MnS. Both of them have lower hardness than those of matrices. Since the hardness of Al2O3 and TiN is higher than that of matrices, they exist as hard spots in steels. The elasticities of BN and MnS are much better than those of Al2O3, TiN, and matrices. BN and MnS which have lower hardness values and better elasticities than matrices can improve the machinability of steel effectively. Special attention should be paid to the effects of inclusions in steel on the results of nano-indentation measurement and macrohardness test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.C. Lou, K. Cui, X.C. Wu, X.Y. Wu, and Y. K. Jia: Mater. Mech. Eng., 1996, vol. 20, pp. 27-30.

    Google Scholar 

  2. A.Y. Zaslavskii: Met. Sci. Heat Treat., 1984, vol. 26, pp. 665-72.

    Article  Google Scholar 

  3. K. Iwata and K. Ueda: Proc. Int. Conf. Production Engineering, Part 1, Toyko, 1974, p. 516.

  4. L. H. S. Luong: Metals Tech., 1980, vol. 7, pp. 465-70.

    Article  Google Scholar 

  5. S. V. Subramanian, H. O. Gekonde, and X. Zhang: Ironmak. Steelmak., 1999, vol. 26, pp. 333-38.

    Article  Google Scholar 

  6. S. Dawson, I. Hollinger, M. Robbins, J. Daeth, U. Reuter, and H. Schulz: SAE Trans., 2001, vol. 110, pp. 334–52.

    Google Scholar 

  7. W.C. Oliver, and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-83.

    Article  Google Scholar 

  8. W.C. Oliver, and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3-20.

    Article  Google Scholar 

  9. H.J. Albrecht, T. Hannach, A. Hase, A. Juritza, K. Muller, and W.H. Muller: Proceedings of 6 th Electronics Packaging Technology Conference, Berlin, Germany, December 8–10, 2004, pp. 462–67.

  10. A.C. Fischer-Cripps: Nanoindentation, 3rd Ed., Springer, New York, 2011, p. 14.

    Book  Google Scholar 

  11. J.W. Li, Y.S. Ni, Y.H. Lin, C. Luo, and W. G. Jiang: Acta Metall. Sin., 2009, vol. 45, pp. 129-36.

    Google Scholar 

  12. L.W. Ma, J.M. Cairney, M. Hoffman, and P.R. Munroe: Surf. Coat. Tech., 2005, vol. 192, pp. 11-18.

    Article  Google Scholar 

  13. F.J. Ulm, M. Vandamme, H.M. Jennings, J. Vanzo, M. Bentivegna, K.J. Krakowiak, G. Constantinides, C.P. Bobko, and K.J. Von Vliet: Cement Concrete Comp., 2010, vol. 32, pp. 92-99.

    Article  Google Scholar 

  14. R.A. Andrievskii, G.V. Kalinnikov, N. Hellgren, P. Sandstrom, and D.V. Shtanskii: Phys. Solid State, 2000, vol. 42, pp. 1671-74.

    Article  Google Scholar 

  15. N. Nagashima, and S. Matsuoka: Mater. Trans., 2006, vol. 47, p. 2326.

    Article  Google Scholar 

  16. D.J. Ma, K.W. Xu, J.W. He, and J. Lu: Acta Metall. Sin., 1999, vol. 35, pp. 1043-48.

    Google Scholar 

  17. Y.S. Li, and W. Wang: Acta Metall. Sin., 2010, vol. 46, pp. 1098-1102.

    Article  Google Scholar 

  18. C.J. Shang, X.M. Wang, Z.J. Zhou, X. Liang, C.L. Liao, and X.L. He: Acta Metall. Sin., 2008, vol. 44, pp. 287-91.

    Google Scholar 

  19. E.P. Koumoulos, D.A. Dragatogiannis, and C.A. Charitidis: Nanomechanical Analysis of High Performance Materials, Springer Netherlands, Dordrecht, 2014, p. 123.

    Book  Google Scholar 

  20. A. Stiénon, A. Fazekas, J.Y. Buffière, A. Vincent, P. Daguier, and F. Merchi: Mater. Sci. Eng. A, 2009, vol. 513, pp. 376-83.

    Article  Google Scholar 

  21. E. Bemporad, C. Pecchio, S. De Rossi, and F. Carassiti: Surf. Coat. Tech., 2001, vol. 146, pp. 363-70.

    Article  Google Scholar 

  22. V. Jayaram, S. Bhowmick, Z.H. Xie, S. Math, M. Hoffman, and S.K. Biswas: Mater. Sci. Eng. A, 2006, vol. 423, pp. 8-13.

    Article  Google Scholar 

  23. A. Barnoush, M. Zamanzade, and H. Vehoff: Scripta Mater., 2010, vol. 62, pp. 242-45.

    Article  Google Scholar 

  24. J.L. Stewart, J.J. Williams, and N. Chawla: Metall. Mater. Trans. A, 2012, vol. 43, pp. 124-35.

    Article  Google Scholar 

  25. K.M. Wu, Z.G. Li, A.M. Guo, X.L. He, L.Q. Zhang, A.H. Fang, and L. Cheng: ISIJ Int., 2006, vol. 46, pp. 161-65.

    Article  Google Scholar 

  26. H.J. Albrecht, T. Hannach, A. Häse, A. Juritza, K. Müller, and W.H. Müller: Arch. Appl. Mech., 2005, vol. 74, pp. 728-38.

    Article  Google Scholar 

  27. M. Delincé, P.J. Jacques, and T. Pardoen: Acta Mater., 2006, vol. 54, pp. 3395-3404.

    Article  Google Scholar 

  28. S. Suresh, A.E. Giannakopoulos, and J. Alcalá: Acta Mater., 1997, vol. 45, pp. 1307-21.

    Article  Google Scholar 

  29. D.M. Follstaedt, J.A. Knapp, and S.M. Myers: Metall. Mater. Trans. A, 2003, vol. 34, pp. 935-49.

    Article  Google Scholar 

  30. P. Lamagnere, D. Girodin, P. Meynaud, F. Vergne, and A. Vincent: Mater. Sci. Eng. A, 1996, vol. 215, pp. 134-42.

    Article  Google Scholar 

  31. W.C. Oliver, C.J. McHargue, and S.J. Zinkle: Thin Solid Films, 1987, vol. 153, pp. 185-96.

    Article  Google Scholar 

  32. M.F. Doerner, and W.D. Nix: J. Mater. Res., 1986, vol. 1, pp. 601-09.

    Article  Google Scholar 

  33. R.K.A. Al-Rub, and A.N.M. Faruk: Mech. Adv. Mater. Struc., 2012, vol. 19, pp. 119-28.

    Article  Google Scholar 

  34. G. Z. Voyiadjis, and R. Peters: Acta Mech., 2010, vol. 211, pp. 131-53.

    Article  Google Scholar 

  35. T.Y. Tsui, J. Vlassak, and W.D. Nix: J. Mater. Res., 1999, vol. 14, pp. 2204-09.

    Article  Google Scholar 

  36. N.R. Moody, W.W. Gerberich, N. Burnham, and S.P. Baker: Spring Meeting of the Materials Research Society, San Francisco, April 13–17, 1998, p. 3.

  37. Y.T. Cheng, Z.Y. Li, and C.M. Cheng: Philos. Mag. A, 2002, vol. 82, pp. 1821-29.

    Article  Google Scholar 

  38. R. Hill, E. H. Lee, and S. J. Tupper: Proc. R. Soc. London, 1947, vol. A188, pp. 273-90.

    Article  Google Scholar 

  39. B.J. Briscoe, L. Fiori, and E. Pelillo: J. Phys. D: Appl. Phys., 1998, vol. 31, p. 2395.

    Article  Google Scholar 

  40. T. Y. Tsui, and G. M. Pharr: J. Mater. Res., 1999, vol. 14, pp. 292-301.

    Article  Google Scholar 

  41. R. Saha, and W.D. Nix: Acta Mater., 2002, vol. 50, pp. 23-38.

    Article  Google Scholar 

  42. N. Nagashima, S. Matsuoka, and K. Miyahara: Trans. Jpn. Soc. Mech. Eng. A, 1999, vol. 65, 477-82.

    Article  Google Scholar 

  43. H.W. Song, B. Shi, X.F. Wang, and J.B. Zhang: Acta Metall. Sin., 2005, vol. 41, 287-90.

    Google Scholar 

  44. Z. G. Yang, S. X. Li, J. M. Zhang, G. Y. Li, Z. B. Li, W. J. Hui, and Y. Q. Weng: Acta Mater., 2004, vol. 52, 5235-41.

    Article  Google Scholar 

  45. J. Luo, and M. Tong: Acta Metall. Sin., 1996, vol. 32, 834-38.

    Google Scholar 

  46. Z. Pawlak, R. Pai, E. Bayraktar, T. Kaldonski, and A. Oloyede: BioSystems, 2008, vol. 94, 202-08.

    Article  Google Scholar 

  47. Y. Kimura, T. Wakabayashi, K. Okada, T. Wada, and H. Nishikawa: Wear, 1999, vol. 232, pp. 199-206.

    Article  Google Scholar 

  48. Z. Pawlak, T. Kaldonski, R. Pai, E. Bayraktar, and A. Oloyede: Wear, 2009, vol. 267, pp. 1198-1202.

    Article  Google Scholar 

  49. Y. N. Wang, Y. P. Bao, M. Wang, and L. C. Zhang: J. Univ. Sci. Technol. B., 2013, vol. 35, pp. 869-74.

    Google Scholar 

  50. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Calphad, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  51. B. Sundman, B. Jansson, and J.O. Andersson: Calphad, 1985, vol. 9, pp. 153-90.

    Article  Google Scholar 

  52. Y. N. Wang, Y. P. Bao, M. Wang, and L. C. Zhang: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 28-36.

    Article  Google Scholar 

  53. Y. Choi, W. Yong Choo, and D. Kwon: Scripta Mater., 2001, vol. 45, pp. 1401–06.

  54. C.X. Liu, D.Z. Li, and G.W. Qiao: Acta Metall. Sin., 2005, vol. 41, pp. 1127-35.

    Google Scholar 

  55. R.T. DeHoff: Quantitative Microscopy, McGraw-Hill, New York, 1968, p. 128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Nan Wang.

Additional information

Manuscript submitted March 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Yang, J. & Bao, YP. Effects of Non-metallic Inclusions on Machinability of Free-Cutting Steels Investigated by Nano-Indentation Measurements. Metall Mater Trans A 46, 281–292 (2015). https://doi.org/10.1007/s11661-014-2596-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2596-3

Keywords

Navigation