Skip to main content
Log in

Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual-Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of thermal aging on the microstructure and mechanical behavior of dual-phase, precipitation-hardened, powder metallurgy (PM) stainless steels of varying ferrite–martensite content were examined. Quantitative analyses of the inherent porosity and phase fractions were conducted on the steels, and no significant differences were noted with respect to aging temperature. Tensile strength, yield strength, and elongation to fracture all increased with increasing aging temperature reaching maxima at 811 K (538 °C) in most cases. Increased strength and decreased ductility were observed in steels of higher martensite content. Nanoindentation of the individual microconstituents was employed to obtain a fundamental understanding of the strengthening contributions. Both the ferrite and martensite nanohardness values increased with aging temperature and exhibited similar maxima to the bulk tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Introducing Powder Metallurgy (PM): www.mpif.org.

  2. R.J. Boucier, D.A. Koss, R.E. Smelser, and O. Richmond: Acta Metall., 1986, vol. 34, no. 12, pp. 2443-53.

    Article  Google Scholar 

  3. G. Straffelini: Powder Metall., 2005, vol. 48, no. 2, pp. 189-92.

    Article  CAS  Google Scholar 

  4. J. Holmes and R.A. Queeney: Powder Metall., 1985, vol. 28, p. 231.

    CAS  Google Scholar 

  5. H.E. Exner and D. Pohl: Powder Metall., 1978, vol. 10, pp. 193-96.

    CAS  Google Scholar 

  6. X. Deng, G.B. Piotrowski, J.J. Williams, and N. Chawla: Int. J. Fatigue, 2005, vol. 27, pp. 1233-43.

    Article  CAS  Google Scholar 

  7. A. Hadrboletz and B. Weiss: Int. Mater. Rev., 1997, vol. 42, pp. 1-44.

    CAS  Google Scholar 

  8. S.J. Polasik, J.J. Williams, and N. Chawla: Metall. Mater. Trans. A, 2002, vol. 33A, p. 73.

    Article  CAS  Google Scholar 

  9. C.T. Schade, T.F. Murphy, A. Lawley, and R. Doherty: Int. J. Powder. Metall., 2009, vol. 45, no. 1, pp. 38-46.

    CAS  Google Scholar 

  10. H.J. Klaar, I.A. El-Sesy, and A.H.A. Hussein: Steel Res., 1990, vol. 61, no. 2, pp. 85-92.

    CAS  Google Scholar 

  11. B. Grushko and B.Z. Weiss: Scripta Metall., 1989, vol. 23, pp. 865-70.

    Article  CAS  Google Scholar 

  12. D.K. Matlock, G. Krauss, L. Ramos, and G.S. Huppi: Structure and Properties of Dual-Phase Steels, American Institute of Mining, Metallurgical, and Petroleum Engineers, Littleton, CO, 1979, pp. 62-90.

    Google Scholar 

  13. M. Erdogan and R. Priestner: Mater. Sci. Technol., 1999, vol. 15, pp. 1273-84.

    CAS  Google Scholar 

  14. M.S. Rashid: Ann. Rev. Mater. Sci., 1981, vol. 11, pp. 245-66.

    Article  CAS  Google Scholar 

  15. I. Tamura, Y. Tomata, A. Okao, Y. Yamaoha, H. Ozawa, and S. Kaotoni: Trans ISIJ, 1973, vol. 13, pp. 283-92.

    Google Scholar 

  16. G.R. Speich and R.L. Miller: Structure and Properties of Dual-Phase Steels, American Institute of Mining, Metallurgical, and Petroleum Engineers, Littleton, CO, 1979, pp. 145-82.

    Google Scholar 

  17. S. Gunduz, B. Demir, and R. Kacar: Ironmaking Steelmaking, 2008, vol. 35, no. 1, pp. 63-68.

    Article  CAS  Google Scholar 

  18. Z. Jiang, Z. Guan, and J. Lian: Mater. Sci. Eng. A, 1995, vol. 190, pp. 55-64.

    Article  Google Scholar 

  19. A. Gural, S. Tekeli, and T. Ando: J. Mater. Sci., 2006, vol. 41, pp. 7894-901.

    Article  Google Scholar 

  20. M. Sarwar and R. Priestner: J. Mater. Sci., 1996, vol. 31, pp. 2091-95.

    Article  CAS  Google Scholar 

  21. A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193-1202.

    Article  CAS  Google Scholar 

  22. P.H. Chang and A.G. Preban: Acta Metall., 1985, vol. 35, no. 5, pp. 897-903.

    Google Scholar 

  23. K. Kocatepe, M. Cerah, and M. Erdogan: J. Mater. Process. Technol., 2006, vol. 178, pp. 44-51.

    Article  CAS  Google Scholar 

  24. S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay: J. Mater. Sci., 2009, vol. 44, pp. 580-90.

    Article  CAS  Google Scholar 

  25. C.N. Hsaio, C.S. Chiou, and J.R. Yang: Mater. Chem. Phys., 2002, vol. 74, pp. 134-42.

    Article  Google Scholar 

  26. S.K. Dhua, A. Ray, and D.S. Sarma: Mater. Sci. Eng. A, 2001, vol. 318, pp. 197-210.

    Article  Google Scholar 

  27. T. Ohmura, K. Sawada, K. Kimura, and K. Tsuzaki: Mater. Sci. Eng. A, 2008, vol. 489, pp. 85-92.

    Article  Google Scholar 

  28. L. Pussegoda and W.R. Tyson: Can. Metall. Q., 23, 1984, pp. 341–47.

  29. J. Moon, S. Kim, J. Jang, J. Lee, and C. Lee: Mater. Sci. Eng. A, 2008, vol. 487, pp. 552-57.

    Article  Google Scholar 

  30. M. Delince, P.J. Jacques, and T. Pardoen: Acta Mater., 2006, vol. 54, pp. 3395-404.

    Article  CAS  Google Scholar 

  31. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Scripta Mater., 2001, vol. 45, pp. 889-94.

    Article  CAS  Google Scholar 

  32. Y. Choi, W.Y. Choo, and D. Kwon: Scripta Mater., 2001, vol. 45, pp. 1401-06.

    Article  CAS  Google Scholar 

  33. T.H. Ahn, K.K. Um, J.K. Choi, D.H. Kim, K.H. Oh, M. Kim, and H.N. Han: Mater. Sci. Eng. A, 2009, vol. 523, pp. 173-77.

    Article  Google Scholar 

  34. J. Jang: J. Mater. Res., 2007, vol. 22, no. 1, pp. 175-85.

    Article  CAS  Google Scholar 

  35. T. Ohmura and K. Tsuzaki: J. Phys. D: Appl. Phys., 2008, vol. 41, pp. 1-6.

    Article  Google Scholar 

  36. T.B. Britton, D. Randman, and A.J. Wilkinson: J. Mater. Res., 2009, vol. 24, no. 3, pp. 607-15.

    Article  CAS  Google Scholar 

  37. T. Ohmura, T. Hara, and K. Tsuzaki: Scripta Mater., 2003, vol. 49, pp. 1157-62.

    Article  CAS  Google Scholar 

  38. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Phil. Mag. A, 2002, vol. 82, pp. 1903-10.

    CAS  Google Scholar 

  39. V.H.B. Hernandez, S.K. Panda, Y. Okita, and N.Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638-47.

    Article  Google Scholar 

  40. V.H.B. Hernandez, S.K. Panda, M.L Kuntz, and Y. Zhou: Mater. Lett., 2010, vol. 64, pp. 207-10.

    Article  Google Scholar 

  41. G.F. Vander Voort, G.M. Lucas, and E.P. Manilova: Metallography and Microstructures of Stainless Steels and Maraging Steels, ASM Handbook 9, 2004, pp. 670–700.

  42. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, p. 1564.

    Article  CAS  Google Scholar 

  43. N. Chawla and X. Deng: Mater. Sci. Eng. A, 2005, vol. 390, pp. 98-112.

    Article  Google Scholar 

  44. K.M. Vedula and R.W. Heckel: Modern Developments in Powder Metallurgy, Metal Powder Industries Federation, Princeton, NJ, 1981.

    Google Scholar 

  45. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed. PWS Publishing Company, Boston, MA, 1994.

    Google Scholar 

  46. T. Marcu, A. Molinari, G. Straffelini, and S. Berg: Int. J. Powder Metall., 2004, vol. 40, no. 3, pp. 57-64.

    CAS  Google Scholar 

  47. W.A. Spitzig, R.E. Smelser, and O. Richmond: Acta Metall., 1988, vol. 36, no. 5, pp. 1201-11.

    Article  CAS  Google Scholar 

  48. A. Salak: Ferrous Powder Metallurgy, Cambridge International Science Publishing, Cambridge, UK, 1997.

    Google Scholar 

  49. N. Chawla, F. Ochoa, V.V. Ganesh, and X. Deng: J. Mater. Sci. Mater. Electron., 2004, vol. 15, pp. 385-88.

    Article  CAS  Google Scholar 

  50. N. Ramakrishnan and V.S. Arunachalam: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2745.

    Article  CAS  Google Scholar 

  51. Q. Furnemont, M. Kempf, P.J. Jacques, M. Goken, and F. Delannay: Mater. Sci. Eng. A, 2002, vol. 328, pp. 26-32.

    Article  Google Scholar 

  52. P. Abramowitz and R.A. Moll: Metall. Trans., 1970, vol. 1, pp. 1773-75.

    Article  CAS  Google Scholar 

  53. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328-39.

    Article  CAS  Google Scholar 

  54. K.K. Chawla, P.R. Rios, and J.R.C. Guimaraes: J. Mater. Sci. Lett., 1983, vol. 2, pp. 94-98.

    Article  CAS  Google Scholar 

  55. H.P. Shen, T.C. Lei, and J.Z. Liu: Mater. Sci. Technol., 1987, vol. 3, pp. 415-21.

    Google Scholar 

  56. F.M. Al-Abbasi and J.A. Nemes: Int. J. Mech. Sci., 2003, vol. 45, pp. 1449-65.

    Article  Google Scholar 

  57. E. Maire, O. Bouaziz, M. Di Michiel, and C. Verdu: Acta Mater., 2008, vol. 56, pp. 4954-64.

    Article  CAS  Google Scholar 

  58. X. Sun, K.S. Choi, W.N. Liu, and M.A. Khaleel: Int. J. Plast., 2009, vol. 25, pp. 1888-1909.

    Article  CAS  Google Scholar 

  59. R.K. Ray: Scripta Metall., 1984, vol. 18, pp. 1205-09.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Hoeganaes Corporation for providing the materials and financial support for this research. We would also like to thank C. Schade and T. Murphy for stimulating discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chawla.

Additional information

Manuscript submitted April 8, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, J.L., Williams, J.J. & Chawla, N. Influence of Thermal Aging on the Microstructure and Mechanical Behavior of Dual-Phase, Precipitation-Hardened, Powder Metallurgy Stainless Steels. Metall Mater Trans A 43, 124–135 (2012). https://doi.org/10.1007/s11661-011-0844-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0844-3

Keywords

Navigation