Skip to main content
Log in

Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage (e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. J.R. Davis, ed.: ASM Specialty Handbook: Cast Irons, ASM International, Materials Park, OH, 1996.

  2. G.M. Goodrich, Technical Editor: Iron Castings Engineering Handbook, American Foundry Society (AFS), Des Plaines, IL, 2003.

  3. R. Elliott, Cast Iron Technology, Butterworths, London, UK, 1988.

    Google Scholar 

  4. D. Li, R. Perrin, G. Burger, D. McFarlan, B. Black, R. Logan, and R. Williams: in Advances in Lightweight Automotive Castings and Wrought Aluminum Alloys, 2004 SAE World Congress, Detroit, MI, March 8–11, 2004, No. 2004-01-0792.

  5. B. Black, G. Burger, R. Logan, R. Perrin, and R. Gundlach: Microstructure and Dimensional Stability in Si-Mo Ductile Irons for Elevated Temperature Applications, SAE International, No. 2002-01-2115.

  6. D.L. Sponseller, W.G. Scholz, and D.F. Rundle, “Development of Low-Alloy Ductile Irons for Service at 1200-1500 F” AFS Trans. 1968, vol. 76, pp. 353-368.

    Google Scholar 

  7. T. Kobayashi, K. Nishino, Y. Kimoto, Y. Awano, Y. Hibino, and H. Ueno, “673K Embrittlement of Ferritic Spheroidal Graphite Cast Iron by Magnesium”, Casting Engineering, 1998, vol. 70, pp. 273-278.

    Google Scholar 

  8. D. Li and C. Sloss: Ferrous High-Temperature Alloys for Exhaust Component Applications, 2010 SAE World Congress, Detroit, MI, SAE International, No. 2010-01-0654, April 13–15, 2010.

  9. Y.-J. Kim, H. Jang, and Y.-J. Oh, Metall. and Mater. Trans. A, 2009, vol. 40A, pp. 2087-2097.

    Article  Google Scholar 

  10. F. Szmytka, L. Rémy, H. Maitournam, A. Köster, Int. J. Plasticity, 2010, vol. 26, pp. 905-924.

    Article  Google Scholar 

  11. L.Rémy, F.Szmytka, L.Bucher, Int. J. Fatigue, 2013, vol. 53, pp. 2-14.

    Article  Google Scholar 

  12. T. Seifert, H. Riedel, Int. J. Fatigue, 2010, vol. 32, pp. 1358-1367.

    Article  Google Scholar 

  13. T. Seifert, G. Maier, A. Uihlein, K.-H. Lang, H. Riedel, Int. J. Fatigue, 2010, vol. 32, pp. 1368-1377.

    Article  Google Scholar 

  14. Frost, H.J. and Ashby, M.F., Deformation Mechanisms Maps, Pergamon Press, Oxford. 1982.

    Google Scholar 

  15. X.J. Wu and A.K. Koul: in Creep and Stress Relaxation in Miniature Structures and Components, H. Merchant ed., TMS, Warrendale, PA, 1996, pp. 3–19.

  16. X.J. Wu, S. Williams, and D.G. Gong: J. Mater. Eng. Perform., 2012, DOI:10.1007/s11665-012-0191-6.

  17. D. Slavik, and H. Sehitoglu, “Thermal stress, materials deformation, and thermo-mechanical Fatigue”, ASME, PVP 123, 1987, pp. 65-82.

    Google Scholar 

  18. J. Lemaitre, and J.L. Chaboche, Mécanique des Matériaux Solides, Dunod, Bordas, Paris, 1999.

    Google Scholar 

  19. X.J. Wu: in Gas Turbine, I. Gurrappa, ed., Sciyo, Rijeka, 2010, pp. 215–82.

  20. X.J. Wu: Trans. ASME J. Eng. Gas Turbines Power, 2009, vol. 131, pp. 032101/1–1/6.

  21. Wescast Industries Inc.: Internal Communication, 2011.

  22. L.F. Coffin, Transactions of the ASME, 1954, vol. 76, pp. 931-950.

    Google Scholar 

  23. S.S. Manson, “Behaviour of Materials under Conditions of Thermal Stresses, National Advisory Co mmision on Aeronautics Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, OH, 1954.

    Google Scholar 

  24. R. Neu and H. Sehitoglu: Metall. Trans. A, 1989, vol. 20A, pp. 1769–83.

    Article  Google Scholar 

  25. M. Reger and L. Remy, Mater. Sci. Eng. A., 1988, vol. 101, pp. 47-54.

    Article  Google Scholar 

  26. S.S. Manson, Expl. Mech. 1965, vol. 5, p. 193.

    Article  Google Scholar 

  27. T.J. Marrow, J.-Y. Buffiere, P.J. Withers, G. Johnson, D. Engelberg, Int. J. Fatigue 2004, vol. 26, pp. 717–725.

    Article  Google Scholar 

  28. K. Tanaka, and T. Mura, J. Appl. Mech. 1981, vol. 48, pp. 97-103.

    Article  Google Scholar 

  29. X.J. Wu, A.K. Koul, and K.S. Krausz, Metall. Trans. A, 1993, vol. 24A, pp. 1373-1380.

    Article  Google Scholar 

  30. G.R. Irwin: Fracture Dynamics, ASM, Cleveland, OH, 1948, pp. 147-66.

    Google Scholar 

  31. J.R. Rice: J. Appl. Mech., 1968, vol. 35, pp. 379–86.

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried as collaboration between the National Research Council Canada (NRC) and Wescast Industries Inc. with partial financial support from the company. The TEM analysis was performed by Drs. Xiang Wang and Hatem Zurob at McMaster University. Luc Lafleur and Weijie Chen of NRC assisted in test equipment calibration and SEM fractorgraphy, respectively. Dr. Xiaoyang Liu of Wescast helped to construct Figure 26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijia Wu.

Additional information

The following pertains only to authors Wu, MacNeil, and Zhang: Published with permission of National Research Council of Canada (the Crown in Right of Canada).

Manuscript submitted January 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Quan, G., MacNeil, R. et al. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions. Metall Mater Trans A 45, 5085–5097 (2014). https://doi.org/10.1007/s11661-014-2468-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2468-x

Keywords

Navigation