Skip to main content

Advertisement

Log in

High Temperature Strengthening in 12Cr-W-Mo Steels by Controlling the Formation of Delta Ferrite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Novel 12Cr-W-Mo-Co heat resistance steels (HRSs) with excellent mechanical properties have been developed for ultra-supercritical (USC) applications above 923 K (650 °C). The thermal analysis of the present steels indicates that the remelting temperature of secondary phases is increased by Co alloying, resulting in the improvement of microstructural stability. Delta ferrite in these HRSs is completely suppressed as the content of Co is increased up to 5 pct. The room temperature tensile strength (TS), yield strength (YS), and the elongation (EL) of the HRS with 5 pct Co reach 887.9, 652.6 MPa, and 21.07 pct, respectively. At 948 K (675 °C), the TS and YS of the HRS with 5 pct Co attain 360 and 290 MPa, respectively, which are higher than those of T/P122 steel by 27.4 and 22.1 pct, respectively. TEM study of the microstructure confirmed that the strengthening effects for these 12Cr-W-Mo-Co HRSs are attributed to the suppression of delta ferrite, the formation of fine martensitic laths with substructure, dislocation networks and walls, and the precipitation of second nanoscale phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V.K. Sikka, C.T. Ward and K.C. Thomas: Ferritic Steel for High-Temperature Application, ASM International, Warrendale, PA, 1981.

    Google Scholar 

  2. K.H. Mayor, W. Bendick, R.U. Hususemann, T. Kern and R.B. Scarlin: New Materials for Improving the Efficiency of Fossil-Field Thermal Power Stations, ASME, New York, 1988.

    Google Scholar 

  3. F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612–25.

    Article  Google Scholar 

  4. Z. Briggs and T.D. Parker: The Super 12% Cr Steels, Climax Molybdenum Co., New York, 1965.

    Google Scholar 

  5. Anon: Super 12% Cr Steels-An Update, Climax Molybdenum Co., New York, 1983.

  6. V. Knežević, J. Balun, G. Sauthoff, G. Inden and A. Schneider: Mater. Sci. Eng. A, 2008, vol. 477, pp. 334–43.

    Article  Google Scholar 

  7. P. Kritzer: J. Supercrit. Fluids, 2004, vol. 29, pp. 1–29.

    Article  Google Scholar 

  8. R.L. Klueh and A.T. Nelson: J. Nucl. Mater., 2007, vol. 371, pp. 37–52.

    Article  Google Scholar 

  9. ASME code case 2180: Seamless 12Cr-2W Material Approved, 1994.

  10. A. Iseda, A. Natoria, Y. Sawaragi, K. Ogawa, F. Masuyama and T. Yokoyama: Therm. Nucl. Power, 1993, vol. 45, p. 900.

    Google Scholar 

  11. Y. Sawaragi, A. Iseda, K. Ogawa, F. Masuyama, and T. Yokoyama: EPRI/National Power Conf. on New Steels for Advanced Plant up to 620 °C, Palo Alto, CA, 1995, pp. 45–55.

  12. Y. Sawaragi, K. Miyata, S. Yamamoto, F. Masuyama, N. Komai, and T. Yokoyama: Advanced Heat Resistant Steel for Power Generation. The Int. of Materials, London, 1999.

    Google Scholar 

  13. M. Hättestrand, M. Schwind and H. Andren: Mater. Sci. Eng. A, 1998, vol. 250, pp. 27–36.

    Article  Google Scholar 

  14. R. Viswanathan and W. Bakker: J. Mater. Eng. Perform., 2001, vol. 10, pp. 81–95.

    Article  Google Scholar 

  15. A. Iseda, M. Yoshizawa, and M. Igarashi: EPRI/National Power Conf. on New Steels for Advanced Plant up to 620 °C, Palo Alto, CA, 1995, pp. 32–39.

  16. M. Yoshizawa and M. Igarashi: Int. J. Press. Vessels Pip., 2007, vol. 84, pp. 37–43.

    Article  Google Scholar 

  17. M. Kaori, S. Yoshiatsu, O. Hirokazu, M. Fujimitsu, Y. Tomomitsu and K. Nobuyoshi: ISIJ Int., 2002, vol. 40, pp. 1156–63.

    Google Scholar 

  18. F. Masuyama: Advanced Heat Resistant Steels for Power Generation, The Int. of Materials, London, 1999.

    Google Scholar 

  19. T. Fujit: in EPRI/National Power Conf. on New Steels for Advanced Plant up to 620 °C, E. Metcalfe, ed., Palo Alto, CA, 1995, p. 190.

  20. M. Ohgami, Y. Hasegawa, H. Naoi and T. Fujita: Advanced Steam Plant, Int. Mech. and Eng., London, 1997.

    Google Scholar 

  21. M. Igarashi and Y. Sawaragi: Power Engineering-97, Japan Society of Mechanical Engineers, Tokyo, 1997.

    Google Scholar 

  22. R.L. Klueh, N.Hashimoto and P.J. Maziasz: Scripta Mater., 2005, vol.53, pp. 275–80.

    Article  Google Scholar 

  23. Z. Sun, X.W. Dong and X.P. Zhang: Heat Treat. Met., 2001, vol. 26, pp. 12–14.

    Google Scholar 

  24. R.L. Klueh, N. Hashimoto and P.J. Maziasz: J. Nucl. Mater, 2007, vol.367, pp. 48–53.

    Article  Google Scholar 

  25. S.Z. Li, Z. Eliniyaz, L.T. Zhang and F. Sun: Mater. Charact., 2012, vol. 73, pp. 144–52.

    Article  Google Scholar 

  26. Q. Li: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 89–97.

    Article  Google Scholar 

  27. P. Hu, W. Yan, Y.Y. Shan and K. Yang: Heat Treat. Met., 2009, vol. 34, pp. 52–55.

    Google Scholar 

  28. S.S. Wang, D.L. Peng, L. Chang and X.D. Hui: Mater. Des., 2013, vol. 12, pp. 174-80.

    Article  Google Scholar 

  29. R. Kapoor, L. Kumar and I.S. Batra: Mater. Sci. Eng. A, 2003, vol. 352, pp. 318–24.

    Article  Google Scholar 

  30. A. Kumar, K. Laha, T. Jayakumar, K.B.S. Rao and B. Raj: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1617–26.

    Article  Google Scholar 

  31. Q.J. Wang, J. Hong and J.Q. Gao: Power Equip., 2009, vol. 6, pp. 451–56.

    Google Scholar 

  32. Y. Dai, X.J. Jia and K. Farrell: J. Nucl. Mater., 2003, vol. 318, pp. 192–99.

    Article  Google Scholar 

  33. J. Pešička, R. Kužel, A. Dronhofer and G. Eggeler: Acta Mater., 2003, vol. 51, pp. 4847–62.

    Article  Google Scholar 

  34. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372–81.

    Article  Google Scholar 

  35. S.Y. Zhang and S.L. Zhang: Ferritic Heat-Resisting Steels: Unrelaxing Research and Development for the World Highest Performance (version), Chap. 10, Metellurgical Industry Press, Beijing, 2003.

  36. O. Prat, J. Garcia, D. Rojas, C. Carrasco and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5976–83.

    Article  Google Scholar 

  37. F. Abe, M. Taneike and K. Sawada: Int. J. Press. Vessels Pip.: 2007, vol. 84, pp. 3–12.

    Article  Google Scholar 

  38. D. Rojas, J. Garcia, O. Prat, G. Sauthoff and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5164-76.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 51071018, 51271018), and also in part by the National Nature Science Foundation of China (No. 51010001), 111 project (No. B07003), and Program for ChangJiang Scholars and Innovative Research Team in University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xidong Hui.

Additional information

Manuscript submitted October 26, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chang, L., Lin, D. et al. High Temperature Strengthening in 12Cr-W-Mo Steels by Controlling the Formation of Delta Ferrite. Metall Mater Trans A 45, 4371–4385 (2014). https://doi.org/10.1007/s11661-014-2411-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2411-1

Keywords

Navigation