Skip to main content
Log in

Enhancing the Mechanical Properties and Formability of Low Carbon Steel with Dual-Phase Microstructures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, a special heat treatment cycle (step quenching) was used to produce a dual-phase (DP) microstructure in low carbon steel. By producing this DP microstructure, the mechanical properties of the investigated steel such as yield stress, tensile strength, and Vickers hardness were increased 14, 55, and 38%, respectively. In order to investigate the effect of heat treatment on formability of the steel, Nakazima forming test was applied and subsequently finite element base modeling was used to predict the outcome on forming limit diagrams. The results show that the DP microstructure also has a positive effect on formability. The results of finite element simulations are in a good agreement with those obtained by the experimental test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of Dual Phase Steels, Int. J. Mech. Sci., 2003, 45, p 1449–1465

    Article  Google Scholar 

  2. S.K. Paul, Effect of Martensite Volume Fraction on Stress Triaxiality and Deformation Behavior of Dual Phase Steel, Mater. Des., 2013, 59, p 782–789

    Article  Google Scholar 

  3. S. Kuang, Y. Kang, H. Yu, and R. Liu, Stress-Strain Partitioning Analysis of Constituent Phases in Dual Phase Steel Based on the Modified Law of Mixture, Int. J. Miner. Metall. Mater., 2009, 16, p 393–398

    Article  Google Scholar 

  4. H. Xu, W. Yang, and Z. Sun, Mechanical Properties of Fine-Grained Dual Phase Low-Carbon Steels Based on Dynamic Transformation, J. Univ. Sci. Technol. Beijing, 2008, 15, p 556–560

    Article  Google Scholar 

  5. C.F. Kuang, J. Li, S.G. Zhang, J. Wang, H.F. Liu, and A.A. Volinsky, Effects of Quenching and Tempering on the Microstructure and Bake Hardening Behavior of Ferrite and Dual Phase Steels, Mater. Sci. Eng., A, 2014, 613, p 178–183

    Article  Google Scholar 

  6. M.J. Molaei and A. Ekrami, The Effect of Dynamic Strain Aging on Fatigue Properties of Dual Phase Steels with Different Martensite Morphology, Mater. Sci. Eng., A, 2009, 527, p 235–238

    Article  Google Scholar 

  7. A. Bayram, A. Uguz, and M. Ula, Effects of Microstructure and Notches on the Mechanical Properties of Dual-Phase Steels, Mater. Charact., 1999, 43, p 259–269

    Article  Google Scholar 

  8. G. Rosenberg, I. Sinaiová, and Ľ. Juhar, Effect of Microstructure on Mechanical Properties of Dual Phase Steels in the Presence of Stress Concentrators, Mater. Sci. Eng., A, 2013, 582, p 347–358

    Article  Google Scholar 

  9. S. Sodjit and V. Uthaisangsuk, Microstructure Based Prediction of Strain Hardening Behavior of Dual Phase Steels, Mater. Des., 2012, 41, p 370–379

    Article  Google Scholar 

  10. F. Ozturka, S. Torosb, and S. Kilic, Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagrams of DP600 Advanced High Strength Steel, Proced. Eng., 2014, 81, p 760–765

    Article  Google Scholar 

  11. M.R. Akbarpour and A. Ekrami, Effect of Ferrite Volume Fraction on Work Hardenin Behavior of High Bainite Dual Phase (DP) Steels, Mater. Sci. Eng., A, 2008, 447, p 306–310

    Article  Google Scholar 

  12. N. Saeidi and A. Ekrami, Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steels, Mater. Sci. Eng., A, 2009, 523, p 125–129

    Article  Google Scholar 

  13. K.S. Park, K. Park, D.L. Lee, and C.S. Lee, Effect of Heat Treatment Path on the Cold Formability of Drawn Dual-Phase Steels, Mater. Sci. Eng., A, 2007, 449, p 1135–1138

    Article  Google Scholar 

  14. H. Farnoush, D.H. Fatmehsari, and A. Ekrami, The Effect of Pre-straining at Intermediate Temperatures on the Mechanical Behavior of High-Bainite Dual Phase (HBDP) Steels, Mater. Sci. Eng., A, 2012, 543, p 224–230

    Article  Google Scholar 

  15. S.B. Kim, H. Huh, H.H. Bok, and M.B. Moon, Forming Limit Diagram of Auto-Body Steel Sheets for High-Speed Sheet Metal Forming, J. Mater. Process. Technol., 2011, 211, p 851–862

    Article  Google Scholar 

  16. M. Firat, A Finite Element Modeling and Prediction of Stamping Formability of a Dual-Phase Steel in Cup Drawing, Mater. Des., 2012, 34, p 32–39

    Article  Google Scholar 

  17. W. Bleck, Z. Deng, K. Papamantell, and C.O. Gusek, A Comparative Study of the Forming-Limit Diagram Models for Sheet Steels, J. Mater. Process. Technol., 1998, 83, p 223–230

    Article  Google Scholar 

  18. S. Panich, F. Barlat, V. Uthaisa, and S. Suranuntchai, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766

    Article  Google Scholar 

  19. G. Krauss, Steels, Heat Treatment and Processing Principles, ASM, 1990

  20. http://www.astm.org/Standards/E3.htm.

  21. http://www.astm.org/Standards/E8.htm.

  22. http://www.iso.org/iso/catalogue_detail.htm?csnumber=43621.

  23. M. Hadianfard, Low Cycle Fatigue Behavior and Failure Mechanism of a Dual-Phase Steel, Mater. Sci. Eng., A, 2009, 499, p 493–499

    Article  Google Scholar 

  24. A. Ghaheri, A. Shafyei, and M. Honarmand, Effects of Inter-Critical Temperatures on Martensite Morphology, Volume Fraction and Mechanical Properties of Dual-Phase Steels Obtained from Direct and Continuous Annealing Cycles, Mater. Des., 2014, 62, p 305–319

    Article  Google Scholar 

  25. A.-P. Pierman, O. Bouaziz, T. Pardoen, and P.J. Jacqu, The Influence of Microstructure and Composition on the Plastic Behaviour of Dual-Phase Steels, Acta Mater., 2014, 73, p 298–311

    Article  Google Scholar 

  26. A.K. Ghosh, The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol., 1977, 99, p 264–274

    Article  Google Scholar 

  27. K.W. Neale and E. Chater, Limit Strain Predictions for Strain-Rate Sensitive Anisotropic Sheets, Int. J. Mech. Sci., 1980, 22, p 563–574

    Article  Google Scholar 

  28. A. Graf and W.F. Hosford, Calculations of Forming Limit Diagrams, Metall. Trans. A, 1990, 21, p 87–94

    Article  Google Scholar 

  29. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1948, p 281–297

  30. Abaqus User Guide, ABAQUS Analysis User’s Manual.

  31. R.S. Korouyeh, H.M. Naeini, and G. Liaghat, Forming Limit Diagram Prediction Of Tailor-Welded Blank Using Experimental and Numerical Methods, J. Mater. Eng. Perform., 2012, 21, p 2053–2061

    Article  Google Scholar 

  32. H. Mamusi, A. Masoumi, R. Hashemi, and R. Mahdavinejad, A Novel Approach to the Determination of Forming Limit Diagrams for Tailor-Welded Blanks, J. Mater. Eng. Perform., 2013, 22, p 3210–3221

    Article  Google Scholar 

  33. A. Assempour, R. Hashemi, K. Abrinia, M. Ganjiani, and E. Masoumi, A Methodology for Prediction of Forming Limit Stress Diagrams Considering the Strain Path Effect, Comput. Mater. Sci., 2009, 42, p 195–204

    Article  Google Scholar 

  34. E. Karajibani, R. Hashemi, M. Sedighi, Determination of Forming Limit Curve in Two-Layer Metallic Sheets Using the Finite Element Simulation, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 1464420715593565

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Habibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M., Hashemi, R., Sadeghi, E. et al. Enhancing the Mechanical Properties and Formability of Low Carbon Steel with Dual-Phase Microstructures. J. of Materi Eng and Perform 25, 382–389 (2016). https://doi.org/10.1007/s11665-016-1882-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1882-1

Keywords

Navigation