Skip to main content
Log in

Influence of the Thermomechanical Treatment on the Intergranular Corrosion Susceptibility of Zn-Modified Al-5.1 Wt Pct Mg-0.7 Wt Pct Mn Alloy Sheet

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

In this study, the effect of thermomechanical treatment on intergranular corrosion (IGC) susceptibility of the Zn-modified Al-5.1 wt pct Mg-0.7 wt pct Mn alloy plates was investigated. The specimens underwent varied amounts of cold work, while final annealing was conducted in the 493 K to 533 K (220 °C to 260 °C) temperature range. It was shown that the extent of cold work, especially at lower temperatures of treatment, had a profound effect on the corrosion resistance of the alloy. Such observation was in direct correlation with the morphology of precipitated ternary grain boundary phase (Al-Mg-Zn). Microstructural characterization showed that, depending on the amount of cold work, different deformation substructures were created, which, in turn, influenced kinetics and the mechanism of precipitation. Wetting of the grain boundaries by the ternary grain boundary phase (Al-Mg-Zn) was a signature of the IGC susceptible state and occurred in the specimens that were subjected to a lower degree of cold work. The specimens that underwent a higher degree of cold work (over 30 pct) showed superior corrosion resistance as a result of ternary grain boundary phase (Al-Mg-Zn) precipitation in the form of discrete particles at the grain boundaries as well as in grain interiors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Foerster Sigmatest 2.069 is a trademark of Foerster Instruments INC, Pittsburgh, PA.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  3. Philips CM200 is a trademark of Koninklijke Philips, N.V.

References

  1. D.G. Altenpohl: ALUMINUM: Technology, Applications and Environment, 6th ed., The Aluminum Association, Washington DC, and TMS, Warrendale, PA, 1999, pp. 349–79.

  2. K. Buxmann, M. Bertram, and P. Kistler: in Light Metals in Transport Applications, Conf. Proc., M. Pekguleryuz, ed., Canadian Institute of Mining, Metallurgy and Petroleum, Westmount, QC, Canada, 2007, pp. 325–38.

  3. K. Osamura and T. Ogura: Metall. Trans. A, 1984, vol. 15A, pp. 835–42.

    Article  Google Scholar 

  4. M.J. Starink and A.-M. Zahra: Phil. Mag. A, 1997, vol. 76A, pp. 701–14.

    Article  Google Scholar 

  5. M.J. Starink and A.-M. Zahra: Acta Mater., 1998, vol. 46, pp. 3381–97.

    Article  Google Scholar 

  6. J.L. Searles, P.I. Gouma, and R.G. Buchheit: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2859–67.

    Article  Google Scholar 

  7. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Mater. Sci. Eng. A, 2010, vol. 527A, pp. 1089–95.

    Article  Google Scholar 

  8. A.J. Davenport, Y. Yuan, R. Ambat, B.J. Connolly, M. Strangwood, A. Afseth, and G. Scamans: Mater. Sci. Forum, 2006, vols. 519–521, pp. 641–46.

    Article  Google Scholar 

  9. X.-Y. Liu and J.B. Adams: Acta Mater., 1998, vol. 46, pp. 3467–76.

    Article  Google Scholar 

  10. M. Popović, T. Radetić, and E. Romhanji: in ICAA13: 13th Int. Conf. on Aluminum Alloys, H. Welland, A.D. Rollett, and W.A. Cassada, eds., John Wiley and Sons, Inc., Hoboken, NJ, 2012, pp. 363–68.

  11. A. Haszler: in Proc. Aluminum Technology and Markets for the New Century, W. Hueck and B. Legrand, eds., DMG Business Media Ltd., Surrey, 1997, pp. 2/1–2/9.

  12. S. Ferraris and L.M. Volpone: 5th International Forum on Aluminum Ships, Tokyo, 2005, pp. 1–11.

  13. A. Czechowski: J. Mater. Processing Technol., 2005, vol. 164, pp. 1001–06.

    Article  Google Scholar 

  14. H.-C. Jiang, L.-Y. Ye, and X.-M. Zhang: Trans. Nonferrous Met. Soc., 2013, vol. 23, pp. 3553–60.

    Article  Google Scholar 

  15. M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn, and B.R. Dunbar: Scripta Mater., 2000, vol. 42, pp. 335–40.

    Article  Google Scholar 

  16. R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1699–1711.

    Article  Google Scholar 

  17. I.N.A. Oguocha, O.J. Adigun, and S. Yannacopoulos: J. Mater. Sci., 2008, vol. 43, pp. 4208–14.

    Article  Google Scholar 

  18. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 348–55.

    Google Scholar 

  19. J. Gao and D.J. Quesnel: Metall. Mater. Trans. A, 2010, vol. 42A, pp. 356–64.

    Google Scholar 

  20. R.L. Holtz, P.S. Pao, R.A. Bayles, T.M. Longazel, and R. Goswami: Metall. Mater. Trans. A, 2011, vol. 43A, pp. 2839–49.

    Google Scholar 

  21. N. Bernstein, R. Goswami, and R.L. Holtz: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2166–76.

    Article  Google Scholar 

  22. R. Goswami and R.L. Holtz: Metall. Mater. Trans. A, 2012, vol. 44A, pp. 1279–89.

    Google Scholar 

  23. Y. Zhu, D.A. Cullen, S. Kar, M.L. Free, and L.F. Allard: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4933–39.

    Article  Google Scholar 

  24. J.C. Chang and T.H. Chuang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3191–99.

    Article  Google Scholar 

  25. J.C. Chang and T.H. Chuang: J. Mater. Eng. Performance, 2000, vol. 9, pp. 253–60.

    Article  Google Scholar 

  26. L. Tan and T.R. Allen: Corros. Sci., 2010, vol. 52, pp. 548–54.

    Article  Google Scholar 

  27. G.R. Argade, N. Kumar, and R.S. Mishra: Mater. Sci. Eng. A, 2013, vol. 565A, pp. 80–89.

    Article  Google Scholar 

  28. T. Radetić, A. Halap, M. Popović, and E. Romhanji: in Light Metals 2014: Proc. TMS 2014 Annual Meeting, J. Grandfield, eds., John Wiley and Sons, Hoboken, NJ, 2014, pp. 297–302.

  29. S.I. Vooijs, S.B. Davenport, I. Todd, and S. Van Der Zwaag: Phil. Mag. A, 2001, vol. 81A, pp. 2059–72.

    Article  Google Scholar 

  30. M. Popović and E. Romhanji: Mater. Sci. Eng. A, 2008, vol. 492A, pp. 460–67.

    Article  Google Scholar 

  31. T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker: Binary Alloy Phase Diagrams, ASM International, Metals Park, OH, 1984, vol. 1, pp. 129–31.

  32. Y.K. Yang and T.R. Allen: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5226–23.

    Article  Google Scholar 

  33. M.C. Carroll, P.I. Gouma, G.S. Daehn, and M.J. Mills: Mater. Sci. Eng. A, 2001, vols. A319–A321, pp. 425–28.

Download references

Acknowledgments

This research was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, and Impol-Seval Aluminum Mill, Sevojno, under Contract Grant No. TR 34018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endre Romhanji.

Additional information

Manuscript submitted September 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halap, A., Radetić, T., Popović, M. et al. Influence of the Thermomechanical Treatment on the Intergranular Corrosion Susceptibility of Zn-Modified Al-5.1 Wt Pct Mg-0.7 Wt Pct Mn Alloy Sheet. Metall Mater Trans A 45, 4572–4579 (2014). https://doi.org/10.1007/s11661-014-2386-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2386-y

Keywords

Navigation