Skip to main content
Log in

Low-Temperature Densification Sintering and Properties of Monoclinic-SrAl2Si2O8 Ceramics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dense monoclinic-SrAl2Si2O8 ceramics have been prepared by a two-step sintering process at a sintering temperature of 1173 K (900 °C). Firstly, the pre-sintered monoclinic-SrAl2Si2O8 powders containing small SiO2·Al2O3 crystal phases were obtained by continuously sintering a powder mixture of SrCO3 and kaolin at 1223 K (950 °C) for 6 hours and 1673 K (1400 °C) for 4 hours, respectively. Subsequently, by the combination of the pre-sintered ceramic powders with the composite flux agents, which are composed of a SrO·3B2O3 flux agent and α-Al2O3, the low-temperature densification sintering of the monoclinic-SrAl2Si2O8 ceramics was accomplished at 1173 K (900 °C). The low-temperature sintering behavior and microstructure evolvement of the monoclinic-SrAl2Si2O8 ceramics have been investigated in terms of Al2O3 in addition to the composite flux agents. It shows that due to the low-meting characteristics, the SrO·3B2O3 flux agent can urge the dense microstructure formation of the monoclinic-SrAl2Si2O8 ceramics and the re-crystallization of the grains via a liquid-phase sintering. The introduction of α-Al2O3 to the SrO·3B2O3 flux agent can apparently lead to more dense microstructures for the monoclinic-SrAl2Si2O8 ceramics but also cause the re-precipitation of SiO2·Al2O3 compounds because of an excessive Al2O3 content in the SrO·3B2O3 flux agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.E. Khoong, Y.M. Tan, and Y.C. Lam: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 1973-87.

    Article  Google Scholar 

  2. K. Makarovic, A. Meden, M. Hrovat, J. Holc, A. Bencan, A. Dakskobler, and M. Kosec: J. Am. Ceram. Soc., 2012, vol. 95, pp. 760-7.

    Article  Google Scholar 

  3. L.A. Orlova, N.V. Popovich, N.E. Uvarova, A. Paleari, and P.D. Sarkisov: Ceram. Int., 2012, vol. 38, pp. 6629-34.

    Article  Google Scholar 

  4. M.M. Krzmanc, M. Valant, and D. Suvorov: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1181-5.

    Article  Google Scholar 

  5. D. Long-Gonzalez, J. Lopez-Cuevas, C.A. Gutierrez-Charria, P. Pena, C. Baudin, and X. Turrillas: Ceram. Int., 2010, vol. 36, pp. 661-72.

    Article  Google Scholar 

  6. C.M. Lopez, J. Lopez-Cuevas, J.L. Rodriguez-Galicia, C.A. Gutierrez-Chavarria, and M.I. Pech-Canul: Bol. Soc. Esp. Ceram. Vidr., 2013, vol. 52, pp. 98-104.

    Article  Google Scholar 

  7. Y. Kobayashi and M. Inagaki: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 399-404.

    Article  Google Scholar 

  8. T. Matsumoto and Y. Goto: J. Ceram. Soc. Jpn., 2009, vol. 117, pp. 748-52.

    Article  Google Scholar 

  9. S. Rajesh and H. Jantunen: Int. J. Appl.Ceram. Technol., 2012, vol. 9, pp. 52-9.

    Article  Google Scholar 

  10. R.E. Chinn, M.J. Haun, C.Y. Kim, and D.B. Price: J. Am. Ceram. Soc., 1998, vol. 81, pp. 2285-93.

    Article  Google Scholar 

  11. H. Witzmann and G. Herzog: Z. Phys. Chem., 1964, vol. 225, pp. 197-208.

    Google Scholar 

  12. C. Ferone, B. Liguori, A. Marocco, S. Anaclerio, M. Pansini, and C. Colella: Microporous Mesoporous Mater., 2010, vol. 34, pp. 65-71.

    Article  Google Scholar 

  13. D.N. Yoon and W.J. Huppmann: Acta Metall., 1979, vol. 27, pp. 693-8.

    Article  Google Scholar 

  14. Z. Misirli, H. Erkalfa, and O.T. Ozkan: Ceram. Int., 1996, vol. 22, pp. 33-7.

    Article  Google Scholar 

  15. P.J.M. Gielisse and W.R. Forster: Nature,1962, vol. 195, pp. 69-70.

    Article  Google Scholar 

  16. J.-S. Kim, M.-E. Song, M-R. Joung Choi, S. Nahm, S.-II Gu, J.-H. Paik, and B.-H. Choi: J. Eur. Ceram. Soc., 2010, vol. 30, pp. 375-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Additional information

Manuscript submitted February 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhu, DG. & Cai, XS. Low-Temperature Densification Sintering and Properties of Monoclinic-SrAl2Si2O8 Ceramics. Metall Mater Trans A 45, 3995–4001 (2014). https://doi.org/10.1007/s11661-014-2344-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2344-8

Keywords

Navigation