Skip to main content
Log in

A Deformation Mechanism Map for the 1.23Cr-1.2Mo-0.26V Rotor Steel and Its Verification Using Neural Networks

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A deformation mechanism map is constructed for the 1.23Cr-1.2Mo-0.26V rotor steel as a function of temperature, stress, and strain rate using published creep test results and the current understanding of time dependent deformation mechanisms operative in complex engineering alloys. Instead of diffusional creep, grain boundary sliding (GBS) accommodated by different deformation processes is considered dominant at lower strain rates. The GBS dominated region is further sub-divided into two parts, where GBS is accommodated by wedge type cracking at temperatures below 0.5T/T m and the accommodation process changes to creep cavitation at temperatures above 0.5T/T m. The map is verified using experimental data and artificial neural network modeling. The proposed artificial neural network model is capable of predicting the dominance of different deformation mechanisms in 1.23Cr-1.2Mo-0.26V steel over a wide range of stress and temperature. This modeling procedure can potentially be used to construct or expand deformation mechanism maps for other engineering alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.K. Bhargava, J. Moteff, and R.W. Swindeman: Metall. Trans. A, 1976, vol. 7A, pp. 879–84.

    Article  Google Scholar 

  2. X.J. Wu and A.K. Koul: Adv. Perf. Mater., 1997, vol. 24, pp. 409–20.

    Article  Google Scholar 

  3. M. Asadi, D. Guillot, A. Weck, S.R. Hegde, A.K. Koul, T. Sawatzky, and H. Saari: in Proc. ASME 2012, Pressure Vessels and Piping Division Conf., Toronto, Canada, 2012.

  4. K. Janghorban and S. Esmaeili: J. Mater. Sci.., 1991, vol. 26, pp. 3362–5.

    Article  Google Scholar 

  5. J.A. Carey, P.M. Sargent, and D.R.H. Jone: J. Mater. Sci. letters, 1990, vol. 9, pp. 572–5.

    Article  Google Scholar 

  6. S.A. Sajjadi and S. Nategh: Mater. Sci. Eng. A, 2001, vol. 307, pp. 158–64.

    Article  Google Scholar 

  7. M. Kawasaki, S. Lee, and T.G. Langdon: Scripta Mater., 2009, vol. 61, pp. 963–6.

    Article  Google Scholar 

  8. H. Luthy, R.A. White, and O.D. Sherby: Mater. Sci. Eng., 1979, vol. 39, pp. 211–6.

    Article  Google Scholar 

  9. R. Castillo, A.K. Koul, J-P. Immarigeon, P. Lowden, and J. Liburdi: Proc. 6th Int. Symp. Superalloys, S. Reichman, D.N. Duhi, G. Maurer, S. Antolovich, and C. Lund, eds., The Metallurgical Society, 1988, pp. 755–64.

  10. A. Ayensu and T.G. Langdon: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 901–7.

    Article  Google Scholar 

  11. J. Wardsworth, O.A. Ruano, and O.D. Sherby: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 219–29.

    Article  Google Scholar 

  12. F.A. Mohamed and T.G. Langdon: Scripta Mater., 1975, vol. 9, pp. 137–40.

    Article  Google Scholar 

  13. F.A. Mohamed and T.G. Langdon: Scripta Mater., 1976, vol. 10, pp. 759–62.

    Article  Google Scholar 

  14. A.K. Koul and J-P. Immarigeon: Proc. ASM Materials Congress Week 93, Pennsylvania, 1993, pp. 755–64.

  15. A.K. Koul, J-P. Immarigeon, and W. Wallace: in Advances in High Temperature Structural Materials and Protective Coatings, National Research Council of Canada, Ottawa, 1994, pp. 95–125.

    Google Scholar 

  16. M.F. Ashby: Scripta Mater., 1969, vol. 3, pp. 837–42.

    Article  Google Scholar 

  17. A. Banerjee, A.K. Koul, A. Kumar, and N. Goel: Annu. Conf. Prognostics and Health Management Society, Montreal, Canada, 2011.

  18. X. Wu: Life Prediction of Gas Turbine Materials, G. Injeti, ed., National Research Council of Canada, Ottawa, 2005.

  19. Y. Estrin, G. Gottstein, and L.S. Shvindlerman: Scripta Materialia, 2004, vol. 50, pp. 993–7.

    Article  Google Scholar 

  20. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, and K. Maruyama: Mater. Trans., 2003, vol. 44, pp. 445–51.

    Article  Google Scholar 

  21. Y. Qi and P.E. Krajewski : Acta Materialia, 2007, vol. 55, pp. 1555–63.

    Article  Google Scholar 

  22. T. Mori, S. Onaka, and K. Wakashima: J. Appl. Phys., 1998, vol. 83, pp. 7547– 52.

    Article  Google Scholar 

  23. L.C. Lee, S.J.S. Morris, and J. Wilkening: Proc. R. Soc. A, 2010, vol. 467, pp. 1624–44. DOI:10.1098/rspa.2010.0447.

  24. R.L. Bell and T.G. Langdon: J. Mater. Sci., 1967, vol. 2, pp. 313–23.

    Article  Google Scholar 

  25. T.G. Langdon: Philos. Mag., 1970, vol. 22, pp. 689–700.

    Article  Google Scholar 

  26. T.G. Langdon: J. Mater. Sci., 1976, vol. 11, pp. 317–27.

    Article  Google Scholar 

  27. T.G. Langdon: Acta Met. Mater., 1994, vol. 42, pp. 2437–43.

    Article  Google Scholar 

  28. X.J. Wu and A.K. Koul: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 905–14.

    Article  Google Scholar 

  29. S. Xu, X.J. Wu, and A.K. Koul: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1039–45.

    Article  Google Scholar 

  30. S. Xu, J.I. Dickson, and A.K. Koul: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2687–95.

    Article  Google Scholar 

  31. H. Demuth, M. Beale, and M. Hagan: Neural Network Toolbox 5, User Guide, The MathWorks, Natick, 2005, p. 7.

    Google Scholar 

  32. N. Bano and M. Nganbe: J. Mat. Eng. Perf., 2013, vol. 22, pp. 952–7.

    Article  Google Scholar 

  33. Y. Kadoya and T. Goto: ISIJ International, 1990, vol. 30, pp. 829–37.

    Article  Google Scholar 

  34. H.J. Frost and M.F. Ashby: Deformation-Mechanism-Maps. The Plasticity and Creep of Metals and Ceramics, 1st ed., Pergamon Press, Oxford, 1982.

    Google Scholar 

  35. W. BruÈckner: Phy. Sta. Sol., 1999, vol. 176, pp. 919–24.

    Article  Google Scholar 

  36. M.F. Ashby: Acta Mater., 1972, vol. 20, pp. 887–97.

    Article  Google Scholar 

  37. T.G. Langdon: Geramurgia International, 1990, vol. 6, pp. 11–18.

    Article  Google Scholar 

  38. A.K. Koul and J-P.A. Emmarigeon: Acta Metall., 1987, vol. 35, pp. 1791–805.

    Article  Google Scholar 

  39. ASM International handbook committee: ASM Handbook, Properties and Selection - Iron, Steels and High Temperature Alloys, 10th ed., ASM International, Materials Park, OH, 1990.

    Google Scholar 

  40. U.F. Kocks, A.S. Argon, and M.F. Ashby: Prog. Mat. Sci., 1975, vol. 19, pp. 1–5.

    Article  Google Scholar 

  41. W. Ren, J. Guo, G. Li, and J. Wu: Mater. Trans., 2004, vol. 45, pp. 1731–7.

    Article  Google Scholar 

  42. S. Meagher, R.S. Borch, J. Groza, A.K. Mukherjee, and H.W. Green III: Acta Metall. Mater., 1992, vol. 40, pp. 159–66.

    Article  Google Scholar 

  43. K. Maruyama, K. Sawada, J. Koike, H. Sato, and K. Yagi: Mater. Sci. Eng. A, 1997, vol. 224, pp. 166–72.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. Nazish Irfan of the School of Electrical Engineering and Computer Science, University of Ottawa, for helping in Matlab programming required in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafisa Bano.

Additional information

Manuscript submitted May 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bano, N., Koul, A.K. & Nganbe, M. A Deformation Mechanism Map for the 1.23Cr-1.2Mo-0.26V Rotor Steel and Its Verification Using Neural Networks. Metall Mater Trans A 45, 1928–1936 (2014). https://doi.org/10.1007/s11661-013-2172-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2172-2

Keywords

Navigation