Skip to main content
Log in

Ultrasonic Fatigue Endurance of Aluminum Alloy AISI 6061-T6 on Pre-corroded and Non-corroded Specimens

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrasonic fatigue tests are carried out on aluminum alloy 6061-T6 in order to analyze the fatigue endurance behavior under artificial pre-corrosion attack by hydrochloric acid for the pH concentrations of 0.47 and 0.80. The pre-corrosion attack is used to simulate the long-time environmental effect and the corresponding decay of fatigue life in regard to non-corroded specimens. Experimental results show that ultrasonic fatigue endurance under these two degrees of pre-corrosion attack decreases dramatically. Furthermore, it is observed that crack initiation is frequently associated with one or several pre-corrosion pitting holes at the specimen surface. Pitting holes are assumed to be semi-hemispherical and the stress concentration factors are evaluated taking into account the size and proximity of two crack initiation pitting holes. The crack growth rates are obtained for the pre-corroded specimens and compared to the non-corroded specimen. Finally, conclusions are listed concerning ultrasonic fatigue endurance of testing specimens, together with the fracture surfaces, crack paths, and crack growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.V. Christy, N. Murugan, and S. Kumar: J. Minim. Math. Charact. Eng., 2010, vol. 9(1), pp. 57-65.

    Google Scholar 

  2. M. Prietto, M. Tsang, S. Hernandez, J. Roepke, D. Piatkowski, E. Lee, P. Stoyanov, J. Ogren, O.S. Es-Said, Eng. Fail. Anal., 2011, vol. 18 (1), pp. 124-37.

    Article  Google Scholar 

  3. S.P. McKenna, M.R. Hill, M.L. Hull, Int. J. of Fatigue., 2002, vol. 24, pp. 1149-57.

    Article  Google Scholar 

  4. N.P. Wasekar, A. Jyothirmayi, G. Sundararajan,, Int. J. of Fatigue, 2011, vol. 33 (9), pp. 1268-76.

    Article  Google Scholar 

  5. G. M. Dominguez Almaraz, J.L. Avila Ambriz, E. Cadenas Calderon, Eng. Fract. Mech., 2012, vol. 93, pp. 119-31.

    Article  Google Scholar 

  6. Y. Oyama: J. Jpn. Inst. Met., 2002, vol. 66(7), pp. 690-95.

    Google Scholar 

  7. P.S. Pao, C.R. Feng, S.J. Gill, Corrosion, 2000, vol. 56 (10), pp. 1022-31.

    Article  Google Scholar 

  8. P.P. Milella: Fatigue and Corrosion in Metals, 1st ed., Springer, Milan, Italy, 2012, 844 p., ISBN: 978-88-470-2336-9.

  9. G.M. Dominguez Almaraz: Patent in Process No. MX/A/2012/000313, IMPI, Mexico, December 2011.

  10. G.M. Dominguez Almaraz, E. Correa Gómez, Materials Science and Applications, 2011, vol. 2, pp. 1293-97.

    Google Scholar 

  11. D.A. Jones: Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1995, 572 pp.

  12. A.A. El-Maghraby, The Open Corrosion Journal, 2009, vol. 2, pp. 189-96.

    Article  Google Scholar 

  13. K. Shiozawa, Y. Moni, S. Nishiro, L.Lu, Int. J. of Fatigue, 2006, vol. 28 (11), pp. 1521-32.

    Article  Google Scholar 

  14. G. Totten: ASM Int., 2008, vol. 166(5), pp. 39-41.

    Google Scholar 

  15. R. P. Wei, D. G. Harlow, AIAA Journal, 2003, vol.41 (10), pp. 2045-50.

    Article  Google Scholar 

  16. R.P. Gangloff: in Corrosion Tests and Standards: Application and Interpretation, R. Baboian, ed., ASTM, Philadelphia, PA, 1995, pp. 253–71.

  17. S. P. Pantelakis, P.V. Petroyiannis, A.T. Kermanidis, Corrosion Reviews, 2011, vol. 25 (3-4), pp.363-76.

    Google Scholar 

  18. G.M. Domínguez Almaraz, V.H. Mercado Lemus and J.J. Villalón López, Proc. Engineering, 2010, vol. 2, pp. 805-13.

    Article  Google Scholar 

  19. G.M. Dominguez Almaraz and R. Pérez Mora: Int. J. Damage Mech., 2012, pp. 1–18. DOI:10.1177/1056789512468913.

  20. Z. Xu, W. Wen, and T Zhai, Metall. Mater. Trans. A, 2012, vol. 43, pp. 2763-70.

    Article  Google Scholar 

  21. J. Fan, D.L. McDowell, M.F. Horstemeyer, and K. Gall, Eng. Frac. Mech., 2003, vol. 70 (10), pp. 1281-1302.

    Article  Google Scholar 

  22. G. Venkataraman, Y.M. Chung, T. Mura, Acta Metall. Mater, 1991, vol. 39 (11), pp. 2621–29.

    Article  Google Scholar 

  23. D.G. Shang, W.X. Yao, and D.J. Wang: Int. J. Fatigue, 1998, vol. 20(9), pp. 683-87.

    Article  Google Scholar 

  24. Q.Y. Wang, N. Kawagoishi, Q. Chen, Int. J. of Fatigue, 2006, vol. 28, pp. 1572-76.

    Article  Google Scholar 

Download references

Acknowledgments

We want to express our gratitude to the University of Michoacan in Mexico (UMSNH) for the use of the facilities in the development of this work. A special mention of gratitude to CONACYT (The Mexican Counsel for Science and Technology) for the financial support given to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo M. Domínguez Almaraz.

Additional information

Manuscript submitted June 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez Almaraz, G.M., Dueñas Aburto, A. & Correa Gómez, E. Ultrasonic Fatigue Endurance of Aluminum Alloy AISI 6061-T6 on Pre-corroded and Non-corroded Specimens. Metall Mater Trans A 45, 280–286 (2014). https://doi.org/10.1007/s11661-013-1983-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1983-5

Keywords

Navigation